交叉注意力机制(Cross-Attention Mechanism) 是一种在深度学习中广泛使用的技术,尤其在序列到序列(sequence-to-sequence)模型和Transformer 模型中被大量应用。它主要用于不同输入之间的信息交互,使模型能够有效地将来自不同来源的上下文进行对齐和关注,从而帮助模型更好地捕捉两个输入之间的相关性。
1. 什么是交叉注意力机制?
在交叉注意力机制中,模型会使用一个输入序列(例如问题)作为查询(Query),然后根据另一个输入序列(例如文本段落)计算与其相关的注意力权重。这种机制允许模型动态地关注不同的输入,决定哪些部分最重要。
交叉注意力的主要功能是捕捉两个输入之间的依赖关系。例如,在问答系统中,交叉注意力机制可以让模型根据问题动态选择文本段落中最相关的部分,从而生成准确的答案。
2. 交叉注意力机制的计算原理
交叉注意力机制基于查询(Query)、键(Key) 和 值(Value) 的计算,它的计算流程类似于自注意力机制,但有一个关键区别:自注意力机制中的查询、键和值都来自同一个输入序列,而交叉注意力机制的查询和键/值来自不同的输入序列。
输入:
- 查询 Q \mathbf{Q} Q 来自一个输入序列(如问题)。
- 键 K \mathbf{K} K 和 值 V \mathbf{V} V 来自另一个输入序列(如段落或上下文)。
步骤:
-
计算查询和键之间的相似度:首先,将查询