SDNUOJ——1086.迷宫问题(BFS || DFS)

本文深入探讨了迷宫寻路问题中,广度优先搜索(BFS)与深度优先搜索(DFS)两种算法的应用。通过具体代码示例,详细解析了BFS如何确保找到最短路径,而DFS则适用于寻找任意可行路径,同时讨论了各自的优势与局限。
摘要由CSDN通过智能技术生成

问题虫洞:1086.迷宫问题

 

思维光年:

1、bfs标记路径

2、dfs回溯

由于对bfs个dfs遍历的过程还不是很理解,故此写一篇基础博客。。。

深度优先搜索(DFS)加回溯。(stack)

其优点:无需像广度优先搜索那样(BFS)记录前驱结点。

其缺点:找到的第一条可行路径不一定是最短路径,

如果需要找到最短路径,那么需要找出所有可行路径后,再逐一比较,求出最短路径。

广度优先搜索(BFS)(queue)

其优点:找出的第一条路径就是最短路径。

其缺点:需要记录结点的前驱结点,来形成路径。

 

DFS推荐博客:DFS——迷宫问题

BFS的代码

//#include<bits/stdc++.h>
#include  <stdio.h>
#include <iostream>
#include<algorithm>
#include      <map>
#include      <set>
#include   <vector>
#include    <queue>
#include    <stack>
#include <stdlib.h>
#include  <cstring>
#include <string.h>
#include   <string>
#include   <math.h>
using namespace std;
typedef long long ll;
#define MAXN 1000007
#define INF 0x3f3f3f3f//将近ll类型最大数的一半,而且乘2不会爆ll

struct node
{
    int x, y, pre;///pre原来标记前一个结点
} g[30];
//queue<node>q;
int is[6][6], m[6][6];///is判断是否访问过该点,m是图
int f[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};

void print(int head)
{
    while(g[head].pre!=-1)
    {
        print(g[head].pre);
        printf("(%d, %d)\n", g[head].x, g[head].y);
        return;
    }
}

void bfs(int x, int y)
{
    int head=0, tail=0;
    g[tail].x = x;
    g[tail].y = y;
    g[tail].pre = -1;
    //is[x][y] = 1;
    tail++;
    node ans;
    while(head < tail)///队列非空
    {
        if(g[head].x == 4 && g[head].y == 4)///终止条件
        {
            print(head);
            return;
        }
        for(int i=0; i<4; ++i)///上下左右遍历该点的周围点
        {
            ans.x = g[head].x + f[i][0];
            ans.y = g[head].y + f[i][1];
            ans.pre = head;
            if(ans.x>=0 && ans.x<=4 && ans.y >=0 && ans.y <=4)
            {
                if(is[ans.x][ans.y]!=1 && m[ans.x][ans.y]!=1)
                {
                    is[ans.x][ans.y] = 1;
                    g[tail++] = ans;
                }
            }
        }
        head++;///该点出队
    }
}

int main()
{
    for(int i=0; i<5; ++i)
        for(int j=0; j<5; ++j)
            scanf("%1d", &m[i][j]);
    printf("(0, 0)\n");
    bfs(0, 0);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值