已知三点坐标,求围成的三角形面积的一个公式

突然感兴趣就想写一下:
已知:平面内三点坐标(X1,Y1),(X2,Y2),(X3,Y3)
问题:求由这三点所围成的三角形的面积(三点各不相同)
分析:
第一种:
在这里插入图片描述
(注意:在坐标系中顺序为三点按逆时针排列)

第二种:
在这里插入图片描述
总的来说公式就是:
S=1/2 * [(x1y2-x2y1)+(x2y3-x3y2)+(x3y1-x1y3)]


下面给出C++的一个函数代码

    double gets(vector<int>p1, vector<int>p2, vector<int>p3){
        return 0.5 * ((p1[0]*p2[1] - p2[0]*p1[1]) + (p2[0]*p3[1] - p3[0]*p2[1]) + (p3[0]*p1[1] - p1[0]*p3[1]));
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值