鸢尾花的散点图(matlab绘制),K近邻(KNN)分类,K-Means聚类算法聚类

前提和数据:

(三类鸢尾花)class:
      -- Iris Setosa
      -- Iris Versicolour
      -- Iris Virginica

每一类50个属性数据,每项数据包括四个数据项,分别是 

   1. sepal length in cm
   2. sepal width in cm
   3. petal length in cm
   4. petal width in cm

最后一项为该数据所属的鸢尾花种类

给出部分截图:

由于文件数据项是用逗号“,”隔开,可直接改成csv格式文件,不行就fopen打开,(我这里是直接导入数据的)

数据处理:

导入数据,分别导入三个50 * 4 的数值矩阵,对应鸢尾花三个种类,且重新命名矩阵为X、Y、Z

一、散点图绘制(matlab代码):

data = ["SepalLength", "SepalWidth", "petalLength", "petalWidth"];
ans = 1:4;
com = combntns(ans, 2);         %四个数据选两个排列组合,相当于C(2,4) = 6;
for i=1:6
    subplot(2, 3, i)            %2*3的图标
    scatter(X(:, com(i, 1)), X(:, com(i, 2)), 'fill', 'r');
    hold on
    scatter(Y(:, com(i, 1)), Y(:, com(i, 2)), 'fill', 'g');
    hold on
    scatter(Z(:, com(i, 1)), Z(:, com(i, 2)), 'fill', 'b');

    title([data(com(i,1)) + ' and ' + data(com(i, 2))]);
    %标题
    legend('iris-setosa', 'iris-versicolor', 'iris-virginica', 'location', 'best');
    %图标
end;

输出截图:

 二、K近邻(KNN)对鸢尾花分类:

K-近邻分类算法部分知识点:

K-近邻分类算法:给定一个训练集,对新输入的测试实例在这个集合中找K个与该实例最近的邻居,然后判断这K个邻居大多数属于某一类,于是新输入的实例就被划分为这一类。

k-近邻算法的三个核心要素:

  • k值的选取
  • 邻居距离的度量
  • 分类决策的制定

距离度量

  • 欧式距离(最常用)坐标点的平方根
  • 汉明距离
  • 曼哈顿距离
  • 闵氏距离

K的取值
k太小:容易受到异常值的影响
k太大:计算成本太高

以鸢尾花为实例进行分析:

前提描述:
用knn算法实现一个鸢尾花的分类器

四个特征为 :花瓣长度、宽度 花萼的长度和宽度
标签为 :花的类别 0、1、2

1、加载数据

from sklearn import datasets
iris = datasets.load_iris()
# 查验数据规模。
iris.data.shape
# 查看数据说明。
print(iris.DESCR)
#print(iris)

2、分割训练数据和测试数据

# 提取特征与标签
# 特征为 :花瓣长度、宽度 花萼的长度和宽度
# 标签为 :花的类别 0——setosa、1——versicolor、2——virginica
x = iris['data']
y = iris['target']
#print(x, y)
from sklearn.model_selection import train_test_split
#从使用train_test_split,利用随机种子random_state采样20%的数据作为测试集。
#x_train是训练数据特征, x_test为测试数据特征, y_train为训练数据标签, y_test为测试数据标签
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=1/5, random_state=0)

3、加载k近邻分类器以及预测(标准化数据)

# 对训练和测试的特征数据进行标准化。
#from sklearn.preprocessing import StandardScaler
#ss = StandardScaler()
#x_train = ss.fit_transform(x_train);
#x_test = ss.transform(x_test)
#print(x_test)

# 从sklearn.neighbors里选择导入KNeighborsClassifier,即K近邻分类器。
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
#y_pred为预测测试数据标签

4、 准确性评测和预测数据分析

print("预测正确分类准确率:", knn.score(x_test, y_test)*100, "%")

# 依然使用sklearn.metrics里面的classification_report模块对预测结果做更加详细的分析。
from sklearn.metrics import classification_report
print("预测结果的详细分析:")
print (classification_report(y_test, y_pred, target_names=iris.target_names))

 参考博客:使用K近邻(KNN)对鸢尾花分类

 我的运行代码:

import matplotlib.pyplot as plt

def debug():
    print("--------------------bug---------------------")

from sklearn import datasets
iris = datasets.load_iris()
iris.data.shape
print(iris.DESCR)
#print(iris)
debug()

# 提取特征与标签
# 特征为 :花瓣长度、宽度 花萼的长度和宽度
# 标签为 :花的类别 0——setosa、1——versicolor、2——virginica
x = iris['data']
y = iris['target']
#print(x, y)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=1/5, random_state=0)
#x_train是训练数据特征, x_test为测试数据特征, y_train为训练数据标签, y_test为测试数据标签
print("训练样本长度:" , len(x_train))
print("测试样本长度:" , len(x_test))

#from sklearn.preprocessing import StandardScaler
#ss = StandardScaler()
#x_train = ss.fit_transform(x_train);
#x_test = ss.transform(x_test)
#print(x_test)
#标准化数据后预测准确率达100%,为体现差异,固未将数据标准化

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
#y_pred为预测测试数据标签
for i in range(len(x_test)):
    print("实际分类:", y_test[i], ", 预测分类:", y_pred[i])
print(y_test)
print(y_pred)
print("预测正确分类准确率:", knn.score(x_test, y_test)*100, "%")

# 依然使用sklearn.metrics里面的classification_report模块对预测结果做更加详细的分析。
from sklearn.metrics import classification_report
print("预测结果的详细分析:")
print (classification_report(y_test, y_pred, target_names=iris.target_names))


输出如下:

--------------数据说明----------------

--------------------bug---------------------
训练样本长度: 120
测试样本长度: 30
实际分类: 2 , 预测分类: 2
实际分类: 1 , 预测分类: 1
实际分类: 0 , 预测分类: 0
实际分类: 2 , 预测分类: 2
实际分类: 0 , 预测分类: 0
实际分类: 2 , 预测分类: 2
实际分类: 0 , 预测分类: 0
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 1
实际分类: 2 , 预测分类: 2
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 2
实际分类: 0 , 预测分类: 0
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 1
实际分类: 0 , 预测分类: 0
实际分类: 0 , 预测分类: 0
实际分类: 2 , 预测分类: 2
实际分类: 1 , 预测分类: 1
实际分类: 0 , 预测分类: 0
实际分类: 0 , 预测分类: 0
实际分类: 2 , 预测分类: 2
实际分类: 0 , 预测分类: 0
实际分类: 0 , 预测分类: 0
实际分类: 1 , 预测分类: 1
实际分类: 1 , 预测分类: 1
实际分类: 0 , 预测分类: 0
[2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0]
[2 1 0 2 0 2 0 1 1 1 2 1 1 1 2 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0]
预测正确分类准确率: 96.66666666666667 %
预测结果的详细分析:
              precision    recall  f1-score   support

      setosa        1.00      1.00      1.00        11
  versicolor       1.00      0.92      0.96        13
   virginica        0.86      1.00      0.92         6

    accuracy                                   0.97        30
   macro avg        0.95      0.97       0.96        30
weighted avg       0.97      0.97      0.97        30

三、K-Means聚类算法对鸢尾花聚类

K-Means聚类算法:

k-means算法的思想比较简单,假设我们要把数据分成K个类,大概可以分为以下几个步骤:

    1、随机选取k个点,作为聚类中心;
    2、计算每个点分别到k个聚类中心的聚类,然后将该点分到最近的聚类中心,这样就行成了k个簇;
    3、再重新计算每个簇的质心(均值);
    4、重复以上2~4步,直到质心的位置不再发生变化或者达到设定的迭代次数。

鸢尾花聚类(python)

依次给出去掉标签的散点图,鸢尾花散点图,用去掉标签数据聚类生成的散点图

用sepal length 和 sepal width 这两个属性作为聚类数据时

代码如下:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
import pandas as pd

def debug():
    print("------------------------bug-----------------")

iris = load_iris()
x = iris['data']
y = iris.target

#绘制无标签散点图
plt.scatter(x[:, 0], x[:, 1], c='blue', marker = 'o', label = 'point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc = 2)
plt.show()

# 绘制sepal散点图
X1 = iris.data
plt.scatter(X1[y==0, 0], X1[y==0, 1], color='r', marker='+', label='setosa')
plt.scatter(X1[y==1, 0], X1[y==1, 1], color='g', marker='x', label='versicolour')
plt.scatter(X1[y==2, 0], X1[y==2, 1], color='b', marker='o', label='virginica')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.title('point_sepal')
plt.legend(loc=2)
plt.show()

#K-Means聚类,k=3
km = KMeans(n_clusters=3)
km.fit(x)
pred = km.labels_
#得到聚类标签

#绘制无标签数据聚类后的散点图
x0 = x[pred == 0]
x1 = x[pred == 1]
x2 = x[pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c = "r", marker='+', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "g", marker='x', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c = "b", marker='o', label='label2')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.title('K-Means_sepal')
plt.legend(loc=2)
plt.show()

输出截图如下:

           无标签散点图                            有标签散点图                           无标签数据聚类散点图

我们发现聚类结果和原标签散点图还是有一些差异的,,,所以接下来我们换后面的两个属性petal length 和 petal width 再试一遍。

用 petal length 和 petalwidth 这两个属性作为聚类数据时:

python代码如下:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
import pandas as pd

def debug():
    print("------------------------bug-----------------")

iris = load_iris()
x = iris['data']
y = iris.target

#绘制无标签散点图
plt.scatter(x[:, 2], x[:, 3], c='r', marker = 'o', label = 'point')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc = 2)
plt.show()

# 绘制petal散点图
X2 = iris.data
plt.scatter(X2[y==0, 2], X2[y==0, 3], color='r', marker='+', label='setosa')
plt.scatter(X2[y==1, 2], X2[y==1, 3], color='g', marker='x', label='versicolour')
plt.scatter(X2[y==2, 2], X2[y==2, 3], color='b', marker='o', label='virginica')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.title('point_sepal')
plt.legend(loc=2)
plt.show()

#K-Means聚类
km = KMeans(n_clusters=3)
km.fit(x)
pred = km.labels_
#得到聚类标签

#绘制无标签数据聚类后的散点图
x0 = x[pred == 0]
x1 = x[pred == 1]
x2 = x[pred == 2]
plt.scatter(x0[:, 2], x0[:, 3], c = "r", marker='+', label='label0')
plt.scatter(x1[:, 2], x1[:, 3], c = "g", marker='x', label='label1')
plt.scatter(x2[:, 2], x2[:, 3], c = "b", marker='o', label='label2')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.title('K-Means_sepal')
plt.legend(loc=2)
plt.show()

输出截图如下:

               无标签散点图                            有标签散点图                       无标签数据聚类散点图

 显然,用 petal length 和 petal width 这两个属性作为聚类数据时的聚类效果更好一些。

参考博客:利用python内置K-Means聚类算法实现鸢尾花数据的聚类

#鸢尾花的数据分析到此就告一段落了。。。。

#如有任何代码错误或数据处理不当问题,请评论告知,非常感谢。

  • 32
    点赞
  • 372
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: K-Means 聚类算法是一种常用的无监督学习算法,它可以将数据集划分为 K 个不同的类别,其中 K 是预先设定的。在 K-Means 算法中,我们需要指定 K 值和距离计算方法,然后通过迭代的方式不断调整聚类中心,直到达到某个停止准则为止。 下面我们以鸢尾花数据集为例,来实现 K-Means 聚类算法。 首先,我们需要导入数据集并进行预处理。这里我们使用 sklearn 中的 load_iris 函数来加载数据集,并使用 MinMaxScaler 对数据进行归一化处理: ``` python from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler # 加载数据集 iris = load_iris() X = iris.data # 数据归一化 scaler = MinMaxScaler() X = scaler.fit_transform(X) ``` 接下来,我们需要实现 K-Means 算法。这里我们使用 scikit-learn 中的 KMeans 类来实现: ``` python from sklearn.cluster import KMeans # 设置 K 值 k = 3 # 初始化 KMeans 模型 kmeans = KMeans(n_clusters=k) # 训练模型并预测结果 y_pred = kmeans.fit_predict(X) ``` 最后,我们可以使用 Matplotlib 来可视化聚类结果: ``` python import matplotlib.pyplot as plt # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("K-Means Clustering") plt.show() ``` 运行以上代码,即可得到鸢尾花数据的聚类结果。 ### 回答2: K-Means聚类算法是一种常用的无监督学习方法,能够对数据进行聚类。在K-Means算法中,通过计算数据点与聚类中心的距离,将数据点归类到距离最近的聚类中心,从而实现数据的聚类鸢尾花数据是机器学习中常用的数据集之一,包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。这些样本被分为三个类别,分别是山鸢尾、变色鸢尾和维吉尼亚鸢尾。 使用K-Means聚类算法鸢尾花数据进行聚类的过程如下: 1. 随机选择K个初始聚类中心。K代表要将数据聚成的类别数,这里我们选择K=3,即将鸢尾花数据聚成3个类别。 2. 对每个数据点,计算其与各个聚类中心的距离,并将其归类到距离最近的聚类中心。 3. 更新每个聚类中心的位置,将其移动到所归类数据点的平均位置。 4. 重复步骤2和3,直到聚类中心不再发生变化或达到预定的迭代次数。 通过上述步骤,可以将鸢尾花数据聚类成3个类别。每个类别中的数据点具有相似的特征,并且与其他类别中的数据点的特征有较大的区别。 K-Means聚类算法的优点是简单易实现,计算效率高。然而,这种算法对初始聚类中心的选择较为敏感,可能会收敛到局部最优解。因此,在应用K-Means算法时,需要进行多次实验,以避免得到不理想的聚类结果。同时,K-Means算法对于离群点比较敏感,离群点可能会影响聚类结果的准确性。 ### 回答3: K-Means 聚类算法是一种常用的无监督学习算法,主要用于将数据集中的样本划分成不同的簇。下面以实现鸢尾花数据的聚类为例进行解释。 首先,我们需要加载鸢尾花数据集,该数据集包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。我们将这些样本表示为一个150x4的矩阵。 然后,我们需要确定簇的数量 k,即要将数据集划分成几个簇。在这里,我们可以根据经验或者领域知识来选择一个合适的值。 接下来,我们需要初始化 k 个簇的中心点。可以随机从数据集中选取 k 个样本作为初始的簇中心点。 然后,对于每个样本,我们计算其与各个簇中心点的距离,并将其分配给距离最近的簇中心点所在的簇。 接着,我们更新每个簇的中心点,即将每个簇中的样本的特征均值作为新的簇中心点。 最后,我们重复执行以上两个步骤,直到簇中心点不再发生变化,或者到达预定的迭代次数。 完成聚类后,我们可以根据簇的中心点和每个样本所属的簇来进行结果的分析和可视化。例如,可以绘制不同簇中心点的特征值分布图,以及将样本点按簇的标签进行颜色分类散点图等。 K-Means 聚类算法能够有效地将数据集划分为不同的簇,实现了对样本的聚类。在鸢尾花数据集这个例子中,我们可以根据花萼和花瓣的特征值将鸢尾花分为不同的类别,从而更好地了解这些花的分类情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值