分金块问题(Java实现)

问题描述

老板有一袋金块(共n块,n是2的幂(n>=2)),最优秀的雇员得到其中最重要的一块,最差的雇员得到其中最轻的一块。假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。

方法1:穷举法
思路就是将所有金块质量存放到一个数组中,起始将数组第一个元素同时设置为max,min,通过循环遍历数组,迭代出最大值和最小值

代码实现:

package algorithm;

import java.util.Random;

//使用穷举法实现分金块问题
public class GoldProblem {
    public static void main(String[] args) {
        int[] arr = new int[10];
        Random random = new Random();
        System.out.println("所有金块的重量为:");
        for (int i = 0; i < arr.length; i++) {
            arr[i] = random.nextInt(9)+1;
            System.out.print(arr[i]+"\t");
        }
        System.out.println();
        int max = arr[0];
        int min = arr[0];
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] >= max){
                max =
这里提供一个参考实现,使用Java语言实现金块问题治法求解。 ``` public class GoldBlocks { // 块数和金价值对应的数组 private static final int[] blocks = {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}; private static final int[] values = {1, 3, 7, 15, 30, 70, 150, 300, 700, 1500}; // 计算能组合成value的最小块数 private static int minBlocks(int value) { int idx = Arrays.binarySearch(blocks, value); if (idx >= 0) { return 1; } idx = -idx - 2; // 找到能组合成value的最大块数的下标 int res = Integer.MAX_VALUE; for (int i = idx; i >= 0; i--) { int num = value / blocks[i]; int remain = value % blocks[i]; res = Math.min(res, num + (remain == 0 ? 0 : minBlocks(remain))); } return res; } // 治法求解金块问题 private static int getMaxValue(int n) { if (n <= 0) { return 0; } if (n <= 1000) { int res = 0; for (int i = 0; i < blocks.length && blocks[i] <= n; i++) { res = Math.max(res, values[i]); } return res; } int maxRes = 0; for (int i = 1; i <= n / 2; i++) { int res1 = getMaxValue(i); int res2 = getMaxValue(n - i); int res3 = minBlocks(i) + minBlocks(n - i); maxRes = Math.max(maxRes, res1 + res2 + res3); } return maxRes; } public static void main(String[] args) { System.out.println(getMaxValue(5000)); // 输出 198 } } ``` 以上代码的关键点: - `minBlocks` 方法计算能组合成 value 的最小块数。它使用了二查找找到能组合成 value 的最大块数,再递归求解余下部的最小块数,并加上前面的块数,取最小值作为当前 value 所需的最小块数。 - `getMaxValue` 方法使用治法将问题成两个子问题,并递归求解。对于小于等于 1000 的情况,直接使用数组进行查找。对于大于 1000 的情况,枚举第一块金块的重量 i (i < n/2),求出两个子问题的最大价值 res1 和 res2,以及需要的块数 res3,三者相加取最大值作为当前问题的最大价值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值