3D机器学习(11):滤镜、卷积、池化、批量标准化

本文详细介绍了3D机器学习中的关键概念,包括滤镜的作用,卷积运算的原理,以及池化和批量标准化在图像处理中的应用。通过实例展示了不同滤镜对图像的影响,如锐化、模糊和边缘提取。讨论了卷积层的参数设置,如步长、填充和多通道卷积。此外,还探讨了池化方法,如最大池化和平均池化,以及ReLU函数的作用。最后,阐述了BatchNorm批量标准化的重要性,它有助于加快网络收敛速度,提高最优解质量,并使网络结构更稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

额外话:Pytorch中,小写是函数,大写是类。

滤镜

卷积运算 =∑同尺寸的2个矩阵中同一位置元素相乘,输出为一个数。

在图片处理里面,给图片加上不同的效果,就是使用的卷积核运算。

比如下面的 “锐化图像”,使用的锐化卷积核,周围的-1和核中间的5可以降低某个像素周边的颜色强度但增加其本身的颜色强度,因此显得很突出。

但是在模糊处理这个滤镜下,就可以使用另一个周边与核心都等于1的模糊卷积核处理,使得扫过的像素本身不变,但是周边的颜色强度与其趋于一致。

   

下图观察边缘提取滤镜,使用的是边缘提取卷积核,我也不知道该怎么解释。

卷积

如上图所示,

  1. 蓝网网格:输入图像,imput_size=5*5
  2. 灰色网格:卷积核,Kernel=3*3, 或是叫Filter滤波器,也叫做weight权重。
  3. 绿色网格:输出图像,output_size=5*5
  4. 移动步长:Stride=1
  5. 加边框:Padding=1
  6. 输出的图像size可以根据下面公式计算得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值