import torch.nn as nn
import torch
import torch.nn.functional as F
# ----------------定义GoogleNet网络classGoogLeNet(nn.Module):def__init__(self, num_classes=1000, aux_logits=True, init_weights=False):# 是否使用辅助分类器super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.conv1 = BasicConv2d(3,64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)# 设置为True时向上取整# 缺省一个nn.LocalResponseNorm层
self.conv2 = BasicConv2d(64,64, kernel_size=1)
self.conv3 = BasicConv2d(64,192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception3a = Inception(192,64,96,128,16,32,32)
self.inception3b = Inception(256,128,128,192,32,96,64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception4a = Inception(480,192,96,208,16,48,64)
self.inception4b = Inception(512,160,112,224,24,64,64)
self.inception4c = Inception(512,128,128,256,24,64,64)
self.inception4d = Inception(512,112,144,288,32,64,64)
self.inception4e = Inception(528,256,160,320,32,128,128)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception5a = Inception(832,256,160,320,32,128,128)
self.inception5b = Inception(832,384,192,384,48,128,128)if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)if init_weights:
self._initialize_weights()defforward(self, x):# N x 3 x 224 x 224
x = self.conv1(x)# N x 64 x 112 x 112
x = self.maxpool1(x)# N x 64 x 56 x 56
x = self.conv2(x)# N x 64 x 56 x 56
x = self.conv3(x)# N x 192 x 56 x 56
x = self.maxpool2(x)# N x 192 x 28 x 28
x = self.inception3a(x)# N x 256 x 28 x 28
x = self.inception3b(x)# N x 480 x 28 x 28
x = self.maxpool3(x)# N x 480 x 14 x 14
x = self.inception4a(x)# N x 512 x 14 x 14# 判断是否为训练过程if self.training and self.aux_logits:# eval model lose this layer
aux1 = self.aux1(x)
x = self.inception4b(x)# N x 512 x 14 x 14
x = self.inception4c(x)# N x 512 x 14 x 14
x = self.inception4d(x)# N x 528 x 14 x 14if self.training and self.aux_logits:# eval model lose this layer
aux2 = self.aux2(x)
x = self.inception4e(x)# N x 832 x 14 x 14
x = self.maxpool4(x)# N x 832 x 7 x 7
x = self.inception5a(x)# N x 832 x 7 x 7
x = self.inception5b(x)# N x 1024 x 7 x 7
x = self.avgpool(x)# N x 1024 x 1 x 1
x = torch.flatten(x,1)# N x 1024
x = self.dropout(x)
x = self.fc(x)# N x 1000 (num_classes)# ----------如果是训练过程则返回三个输出结果,否则只返回一个if self.training and self.aux_logits:# eval model lose this layerreturn x, aux2, aux1
return x
# ------------初始化权重函数def_initialize_weights(self):for m in self.modules():ifisinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias isnotNone:
nn.init.constant_(m.bias,0)elifisinstance(m, nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)# --------------inception结构classInception(nn.Module):def__init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):# inception结构卷积核super(Inception, self).__init__()
self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# 定义分支一
self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)# 保证输出大小等于输入大小)# 定义分支二
self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),# 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue# Please see https://github.com/pytorch/vision/issues/906 for details.
BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)# 保证输出大小等于输入大小)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
BasicConv2d(in_channels, pool_proj, kernel_size=1))defforward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)
outputs =[branch1, branch2, branch3, branch4]return torch.cat(outputs,1)# 将输出在channel维度进行拼接 B * C * W * H# --------------定义辅助分类器classInceptionAux(nn.Module):def__init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()
self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
self.conv = BasicConv2d(in_channels,128, kernel_size=1)# output[batch, 128, 4, 4]
self.fc1 = nn.Linear(2048,1024)
self.fc2 = nn.Linear(1024, num_classes)defforward(self, x):# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = self.averagePool(x)# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)# N x 128 x 4 x 4
x = torch.flatten(x,1)
x = F.dropout(x,0.5, training=self.training)# N x 2048
x = F.relu(self.fc1(x), inplace=True)
x = F.dropout(x,0.5, training=self.training)# N x 1024
x = self.fc2(x)# N x num_classesreturn x
# -------------写一个基础卷积,将卷积和激活函数写到一块classBasicConv2d(nn.Module):def__init__(self, in_channels, out_channels,**kwargs):super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels,**kwargs)
self.relu = nn.ReLU(inplace=True)defforward(self, x):
x = self.conv(x)
x = self.relu(x)return x
二:train.py
import os
import sys
import json
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm
from model import GoogLeNet
defmain():
device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")print("using {} device.".format(device))
data_transform ={"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]),"val": transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])}
data_root = os.path.abspath(os.path.join(os.getcwd(),"../.."))# get data root path
image_path = os.path.join(data_root,"data_set","flower_data")# flower data set pathassert os.path.exists(image_path),"{} path does not exist.".format(image_path)
train_dataset = datasets.ImageFolder(root=os.path.join(image_path,"train"),
transform=data_transform["train"])
train_num =len(train_dataset)# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
cla_dict =dict((val, key)for key, val in flower_list.items())# write dict into json file
json_str = json.dumps(cla_dict, indent=4)withopen('class_indices.json','w')as json_file:
json_file.write(json_str)
batch_size =32
nw =min([os.cpu_count(), batch_size if batch_size >1else0,8])# number of workersprint('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=nw)
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path,"val"),
transform=data_transform["val"])
val_num =len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=nw)print("using {} images for training, {} images for validation.".format(train_num,
val_num))# test_data_iter = iter(validate_loader)# test_image, test_label = test_data_iter.next()
net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)# 如果要使用官方的预训练权重,注意是将权重载入官方的模型,不是我们自己实现的模型# 官方的模型中使用了bn层以及改了一些参数,不能混用# import torchvision# net = torchvision.models.googlenet(num_classes=5)# model_dict = net.state_dict()# # 预训练权重下载地址: https://download.pytorch.org/models/googlenet-1378be20.pth# pretrain_model = torch.load("googlenet.pth")# del_list = ["aux1.fc2.weight", "aux1.fc2.bias",# "aux2.fc2.weight", "aux2.fc2.bias",# "fc.weight", "fc.bias"]# pretrain_dict = {k: v for k, v in pretrain_model.items() if k not in del_list}# model_dict.update(pretrain_dict)# net.load_state_dict(model_dict)
net.to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0003)
epochs =30
best_acc =0.0
save_path ='./googleNet.pth'
train_steps =len(train_loader)for epoch inrange(epochs):# train
net.train()
running_loss =0.0
train_bar = tqdm(train_loader,file=sys.stdout)for step, data inenumerate(train_bar):
images, labels = data
optimizer.zero_grad()# ---------这里网络训练后会有三个输出
logits, aux_logits2, aux_logits1 = net(images.to(device))
loss0 = loss_function(logits, labels.to(device))# 主分类器与真实标签的损失
loss1 = loss_function(aux_logits1, labels.to(device))# 辅助分类器1与真实标签的损失
loss2 = loss_function(aux_logits2, labels.to(device))# 辅助分类器2与真实标签的损失
loss = loss0 + loss1 *0.3+ loss2 *0.3# 最终的损失
loss.backward()
optimizer.step()# print statistics
running_loss += loss.item()
train_bar.desc ="train epoch[{}/{}] loss:{:.3f}".format(epoch +1,
epochs,
loss)# validate
net.eval()
acc =0.0# accumulate accurate number / epochwith torch.no_grad():
val_bar = tqdm(validate_loader,file=sys.stdout)for val_data in val_bar:
val_images, val_labels = val_data
outputs = net(val_images.to(device))# eval model only have last output layer
predict_y = torch.max(outputs, dim=1)[1]
acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
val_accurate = acc / val_num
print('[epoch %d] train_loss: %.3f val_accuracy: %.3f'%(epoch +1, running_loss / train_steps, val_accurate))if val_accurate > best_acc:
best_acc = val_accurate
torch.save(net.state_dict(), save_path)print('Finished Training')if __name__ =='__main__':
main()
三:predict.py
import os
import json
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
from model import GoogLeNet
defmain():
device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")
data_transform = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])# load image
img_path ="../tulip.jpg"assert os.path.exists(img_path),"file: '{}' dose not exist.".format(img_path)
img = Image.open(img_path)
plt.imshow(img)# [N, C, H, W]
img = data_transform(img)# expand batch dimension
img = torch.unsqueeze(img, dim=0)# read class_indict
json_path ='./class_indices.json'assert os.path.exists(json_path),"file: '{}' dose not exist.".format(json_path)withopen(json_path,"r")as f:
class_indict = json.load(f)# create model
model = GoogLeNet(num_classes=5, aux_logits=False).to(device)# 预测的时候不需要辅助分类器# load model weights
weights_path ="./googleNet.pth"assert os.path.exists(weights_path),"file: '{}' dose not exist.".format(weights_path)
missing_keys, unexpected_keys = model.load_state_dict(torch.load(weights_path, map_location=device),
strict=False)# 保存的权重文件有辅助分类器,这里设置为False不精准匹配权重
model.eval()with torch.no_grad():# predict class
output = torch.squeeze(model(img.to(device))).cpu()
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
print_res ="class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
predict[predict_cla].numpy())
plt.title(print_res)for i inrange(len(predict)):print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
predict[i].numpy()))
plt.show()if __name__ =='__main__':
main()