深度学习
孤独中雕刻的时光
这个作者很懒,什么都没留下…
展开
-
mobilenet和yolo进化史(持续更新细节)
常见的轻量级网络:SqueezeNet、Xception、shuffleNet V1-V2、和以下MobileNet V1-V3。MobileNet V1:2017年提出,专注于移动端和嵌入式设备中的轻量级CNN。特点:提出深度可分离卷积、RELU6适用于嵌入式设备MobileNet V2:2018年提出,引入Inverted Residuals倒残差模型先扩张后压缩和Linear Bottlenecks。MobileNet V3:2019年提出,进一步较少延时特点:h-switch激活函数、SE原创 2020-06-25 09:47:12 · 2122 阅读 · 0 评论 -
人工智能面试
1、有监督无监督半监督区别:一个有标签一个无标签,部分标签是半监督学习,无监督模型包括所有的聚类算法。// A code blockimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torch.autograd import Variableclass name(nn.Module); def __init__(self, A,B,C) super(name, self原创 2020-06-09 21:56:51 · 466 阅读 · 0 评论 -
CBAM: Convolutional Block Attention Module翻译
摘要:我们提出了卷积块注意模块(CBAM),这是一个简单而有效的用于前馈卷积神经网络的注意模块。在给定中间特征图的情况下,我们的模块沿着两个独立的维度(通道和空间)依次推断注意图,然后将注意图乘到输入特征图进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基本CNNs一起进行端到端培训。Introduction卷积神经网络(Convolutional neural networks, CNNs)凭借其丰富的表示能力,显著提升了视觉任务原创 2020-07-15 17:03:25 · 1316 阅读 · 0 评论 -
深度学习进阶理论
1、深度可分离卷积正常卷积:它的卷积核是针对图片的所有通道设计的(通道的总数就是depth)。那么,每要求增加检测图片的一个属性,卷积核就要增加一个。所以正常卷积,卷积参数的总数=属性的总数x卷积核的大小。深度可分离卷积:针对每个通道分别卷积输出三个属性,再通过11depth的卷积核合并。比较:仅仅是提取一个属性,深度可分离卷积的方法,不如正常卷积。随着要提取的属性越来越多,深度可分离卷积就能够节省更多的参数。参考:链接: link....原创 2020-05-12 09:08:16 · 1467 阅读 · 0 评论 -
序列预测问题分类(根据问题的输入和输出模型划分)
1、 基本模型结构,预测一个序列,输入:多个时间步,输出:单个时间步输入1,2,3 标签4输入2,3,4 标签5输入3,4,5 预测标签6以此类推,时间窗口为3,通常输入形式:(窗口大小3,每个窗口序列个数,此处为1)2、 多序列输入,单序列输出输入[[1,2,3],[2,4,5],[3,6,7]] 标签100输入[[2,4,5],[3,6,7],[4,8,9]] 标签1...原创 2020-05-05 11:24:52 · 901 阅读 · 0 评论 -
pytorch出错总结
1、BrokenPipeError: [Errno 32] Broken pipe该问题的产生是由于windows下多线程的问题,和DataLoader类有关。通过修改***num_works参数为 0*** ,只启用一个主进程加载数据集,避免在windows使用多线程即可。...原创 2020-04-30 08:59:46 · 1230 阅读 · 0 评论 -
Pytorch函数
***1、Variable:***一种存放tensor变量的方式,pytorch中tensor只能放在CPU上运算,而(variable)变量是可以只用GPU进行加速计算的。from torch.autograd import Variablex = Variable(tensor, requires_grad = True)Varibale包含三个属性:data:存储了Tensor,是本...原创 2020-03-29 17:04:23 · 365 阅读 · 0 评论 -
自定义代码模块(深度学习)
// 将labels转为one-hot形式,np.eye为创建对角线为1的数组def get_one_hot(targets, nb_classes): return np.eye(nb_classes, dtype=np.float32)[np.array(targets).reshape(-1)]原创 2020-03-27 20:27:33 · 515 阅读 · 0 评论 -
深度学习基础理论(学习中持续更新)
1、导数、偏导数、方向导数、梯度的概念**导数:**导数反映的是函数y=f(x)在某一点处沿x轴正方向的变化率。**偏导数:**在多元函数中,偏导数指的是函数y(x1,x2,…,xn)沿某一坐标轴(x1,x2,…,xn)正方向的变化率。**方向导数:**导数和偏导数都是沿坐标轴正方向的变化率。那么当我们讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近方向上的导数值...原创 2020-03-27 20:26:14 · 561 阅读 · 0 评论