CBAM: Convolutional Block Attention Module翻译

摘要:我们提出了卷积块注意模块(CBAM),这是一个简单而有效的用于前馈卷积神经网络的注意模块。在给定中间特征图的情况下,我们的模块沿着两个独立的维度(通道和空间)依次推断注意图,然后将注意图乘到输入特征图进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基本CNNs一起进行端到端培训。

Introduction
卷积神经网络(Convolutional neural networks, CNNs)凭借其丰富的表示能力,显著提升了视觉任务的性能。为了提高CNNs的性能,近年来的研究主要考察了网络的三个重要因素:深度、宽度和基数。从LeNet架构的到残差样式的网络到目前为止,网络已经为丰富的表示变得更加深入。VGGNet显示相同形状的堆叠块给出了公平的结果。遵循同样的精神,
ResNet堆叠了相同的拓扑剩余块连同跳跃连接,以建立一个极深的架构。GoogLeNet表明,宽度是提高模型性能的另一个重要因素。
注意的意义在以前的文献中已经被广泛研究,注意力不仅能告诉你应该关注哪里,还能提高兴趣的代表性。我们的目标是通过使用注意机制来增加表示能力:关注重要的特性并抑制不必要的特性。在本文中,我们提出了一个新的网络模块,命名为“Convolutional Block Attention module”。由于卷积运算通过混合跨信道和空间信息来提取信息特征,我们采用我们的模块来强调这两个主要维度:信道和空间轴上的有意义的特征。为了实现这一点,我们依次应用通道和空间注意模块。这样,每个分支都可以分别在通道和空间轴中学习“什么”和“哪里”。因此,我们的模块通过学习哪些信息需要强调,哪些信息需要抑制,从而有效地帮助网络中的信息流。
在这里插入图片描述
2、related work
自从大规模CNN的成功实现以来,已经提出了广泛的体系结构。一种直观、简单的扩展方法是增加神经网络的深度
人类视觉系统的一个重要特性是人们不会试图一次性处理整个场景。相反,为了更好地捕捉视觉结构,人类利用一系列的部分瞥见,选择性地聚焦于突出的部分。
BAM采用了类似的方法,将三维注意图推理分解为通道和空间。他们把BAM模块放在网络的每个瓶颈上,而我们在每个卷积块上进行插入。
3、CBAM
给出一个中间特征图
图2描述了每个注意图的计算过程。
在这里插入图片描述
如图所示,信道子模块在共享网络中利用最大池输出和平均池输出;空间子模块利用沿通道轴汇集的类似的两个输出,并将它们转发到卷积层。
**通道关注模块:**利用特征的通道间关系,生成通道注意图。由于每个通道的特征图被认为是一个特征探测器[32],通道的注意力集中在’什么’是有意义的输入图像。为了有效地计算信道注意,我们压缩了输入特征图的空间维数。对于空间信息的聚合,目前普遍采用平均池的方法。我们认为,最大汇集汇集了另一个重要的线索,关于独特的对象特征,以推断更精细的渠道明智的注意。因此,我们同时使用平均池和最大池功能。我们首先使用平均配流操作和最大池操作来聚合地物图的空间信息,生成两种不同的空间上下文描述符:分别表示平均汇集特征和最大汇集特征。然后,将两个描述符转发到共享网络,以生成我们的通道注意图。共享网络由多层感知器(MLP)和一个隐含层组成。在将共享网络应用于每个描述符之后,我们使用元素求和来合并输出特征向量。简而言之,信道注意计算为:在这里插入图片描述
**空间关注模块:**利用特征的空间间关系生成空间注意图。与渠道注意不同的是,空间注意集中在“哪里”是信息部分,是对渠道注意的补充。为了计算空间注意,我们首先沿着通道轴应用平均池操作和最大池操作,并将它们连接起来以生成有效的特征描述符。沿着通道轴应用池操作在突出显示信息区域方面被证明是有效的。在连接的特征描述符上,我们应用卷积层来生成空间注意图在需要强调或压制的地方进行编码。在这里插入图片描述
注意力模块的安排:给定一个输入图像,两个注意模块,通道和空间,计算互补注意,集中注意“什么”和“在哪里”。考虑到这一点,两个模块可以以并行或顺序的方式放置。我们发现顺序排列比平行排列的结果更好。对于顺序过程的安排,我们的实验结果表明,通道优先顺序略优于空间优先顺序。
在这里插入图片描述

### 回答1: CBAM卷积块注意力模块的缩写,是一种用于交替堆叠到深度卷积神经网络(CNNs)中的模块。它包含两个子模块:通道注意力模块和空间注意力模块。通道注意力模块用来对每个通道进行加权,确定哪些通道最重要。空间注意力模块在每个通道中对所有空间位置进行加权,可以捕捉不同位置的重要性,从而更好地定位物体。 CBAM的优点在于,它能够提高CNNs的性能,减少了过度拟合的情况。CBAM结构的输入任意大小、任意通道数、任意深度,因此可以适用于各种计算机视觉任务,包括图像分类,物体检测和语义分割等。 总之,CBAM是一种具有高灵活性和高性能的卷积块注意力模块,能够极大地增强CNNs的表达能力,提高计算机视觉任务的准确性。 ### 回答2: CBAMConvolutional Block Attention Module),是一种用于图像分类的Attention模块,它主要是用于增强卷积神经网络(CNN)的特征表达能力,使得CNN能够更好地区分不同种类的图像。 CBAM结构由两部分组成,分别是CBAM-Channel和CBAM-Spatial。在CBAM-Channel中,它通过引入注意力机制,对每个通道的特征进行加权求和,并且使用全局平均池化操作,计算其重要性参数,进而对特征进行修正,从而提升模型的表达能力。CBAM-Spatial则通过空间注意力机制对图像中的区域进行注意力分配权重,进一步优化模型的性能。 CBAM在图像分类方面的性能表现非常卓越。实验证明,在对比原始ResNet和ResNeXt网络,以及加入CBAM的ResNet和ResNext网络进行图像分类时,加入CBAM的ResNet和ResNeXt网络具有更强的表达能力和更高的分类准确性,同时,它在训练过程中的收敛速度也有所提升。 总的来说,CBAM是一种非常有效的图像分类模块,利用注意力机制对CNN的特征进行增强,为图像分类任务提供了更好的性能表现。随着人工智能的迅速发展,CBAM在图像识别、物体检测等领域将具有广阔的应用前景。 ### 回答3: CBAM卷积块注意力模块的缩写,它是一种用于图像分类和目标检测的神经网络模型。CBAM模块通过将通道和空间注意力机制组合在一起,从而有效地提高了模型的性能。 CBAM模块分为两个部分:通道注意力机制和空间注意力机制。通道注意力机制是针对图像特征中的通道信息进行关注,它可以基于每个通道的特征图来计算权重,然后对于每个通道进行信息的调整和加权。这样,在网络中的每个层次上都能更好地利用有用的通道信息,减少无用信息对网络性能的影响。 空间注意力机制是针对图像特征中的空间信息进行关注。它能够自适应地计算每个像素点的权重,然后对于每个像素点进行信息的调整和加权。这样,网络中的每个空间位置都能更好地利用有用的空间信息,提高目标检测和分类的准确率。 通过组合这两种注意力机制,CBAM模块能够区分有用和无用的特征,从而在图像分类和目标检测任务中取得更好的性能。CBAM模块通常被用在深度卷积神经网络中,例如ResNet以及MobileNet等,以提高整个网络中的特征提取能力和分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值