连续时间傅里叶变换

讲述之前,我们先回顾一下什么是傅里叶级数。
傅里叶级数综合方程:
合成方程:
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t x(t)=\sum_{k=-\infty}^{+\infty} a_{k}e^{jkw_{0}t} x(t)=k=+akejkw0t
分析方程:
a k = 1 T 0 ∫ T 0 x ( t ) e − j k w 0 t d t a_{k}=\frac{1}{T_{0}}\int _{T_{0}}x(t)e^{-jkw_{0}t}dt ak=T01T0x(t)ejkw0tdt
一个周期信号可以分解成不同频率成分的复指数信号。每个频率成分的系数可分别求出。
我们现在来扩展想法,同样以复指数的线性组合,用来构建非周期信号。这样做的原理和思路非常简单。首先,如果我们有一个非周期信号,我们可以通过周期性地复制这个非周期信号,来构建一个新的周期信号。这样的话,我们会注意到一下两点,一是在一个周期内,非周期信号与周期信号相等。二是随着周期接近于无穷,这个周期信号会接近于非周期信号。
所以,傅里叶变换的基本原理就是,用傅里叶级数来表示周期信号,然后让周期趋于无穷,从而检验傅里叶级数的表达式。
在这里插入图片描述

x ~ ( t ) = x ( t ) ∣ t ∣ < T 0 2 \tilde{x}(t)=x(t) \quad |t|<\frac{T_{0}}{2} x~(t)=x(t)t<2T0
周期信号 x ~ \tilde{x} x~可由傅里叶级数合成,
x ~ = ∑ k = − ∞ + ∞ a k e j k w 0 t w 0 = 2 π T 0 \tilde{x}=\sum_{k=-\infty}^{+\infty}a_{k}e^{jkw_{0}t} \quad w_{0}=\frac{2\pi}{T_{0}} x~=k=+akejkw0tw0=T02π
a k = 1 T 0 ∫ − T 0 / 2 T 0 / 2 x ~ ( t ) e − j k w 0 t d t a_{k}=\frac{1}{T_{0}}\int_{-T_{0}/2}^{T_{0}/2} \tilde{x}(t)e^{-jkw_{0}t}dt ak=T01T0/2T0/2x~(t)ejkw0tdt
由于在一个周期内原始非周期信号等价于周期信号,因此:
a k = 1 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) e − j k w 0 t d t a_{k}=\frac{1}{T_{0}}\int_{-T_{0}/2}^{T_{0}/2} x(t)e^{-jkw_{0}t}dt ak=T01T0/2T0/2x(t)ejkw0tdt
当周期 T 0 T_{0} T0趋近于无穷时,则得到非周期信号的傅里叶级数系数表达式:
a k = 1 T 0 ∫ − ∞ + ∞ x ( t ) e − j k w 0 t d t a_{k}=\frac{1}{T_{0}}\int_{-\infty}^{+\infty} x(t)e^{-jkw_{0}t}dt ak=T01+x(t)ejkw0tdt
这里为了方便,我们定义 w = k w 0 w=kw_{0} w=kw0,则定义函数 X ( w ) X(w) X(w)为:
X ( w ) = ∫ − ∞ + ∞ x ( t ) e − j w t d t X(w)=\int_{-\infty}^{+\infty} x(t)e^{-jwt}dt X(w)=+x(t)ejwtdt
上式即为傅里叶变换的分析方程。此时,我们得到
T 0 a k = X ( w ) ∣ w = k w 0 T_{0}a_{k}=X(w)|_{w=kw_{0}} T0ak=X(w)w=kw0
我们可知道,X(w)是 T 0 a k T_{0}a_{k} T0ak的包络。
x ~ = ∑ k = − ∞ + ∞ a k e j k w 0 t = ∑ k = − ∞ + ∞ 1 T 0 X ( k w 0 ) e j k w 0 t \tilde{x}=\sum_{k=-\infty}^{+\infty}a_{k}e^{jkw_{0}t}=\sum_{k=-\infty}^{+\infty}\frac{1}{T_{0}}X(kw_{0})e^{jkw_{0}t} x~=k=+akejkw0t=k=+T01X(kw0)ejkw0t
由于 T 0 = 2 π w 0 T_{0}=\frac{2\pi}{w_{0}} T0=w02π,代入得
x ~ = 1 2 π ∑ k = − ∞ + ∞ X ( k w 0 ) e j k w 0 t w 0 \tilde{x}=\frac{1}{2\pi}\sum_{k=-\infty}^{+\infty}X(kw_{0})e^{jkw_{0}t}w_{0} x~=2π1k=+X(kw0)ejkw0tw0
这样的话, x ~ ( t ) \tilde{x}(t) x~(t)则变成了一个积分,我们要检验当周期区域无穷时,也就是当 w 0 w_{0} w0变得非常小、无限小时,上述公式的总和即为对 w w w进行求积分,我们最后得到的傅里叶变换合成公式是这样的,
x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( w ) e j w t d w x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(w)e^{jwt}dw x(t)=2π1+X(w)ejwtdw
也就是当 w 0 w_{0} w0接近于0时的傅里叶级数的极限形式。
我们通常将x(t)和X(w),即分析公式和合成公式称为一个傅里叶变换对。
当x(t)是实数时,通常得到的傅里叶变换同样会是一个复变函数。实数函数的傅里叶变换系数也是复数。因此,我们可以将傅里叶变换同样表达为实数部分+虚数部分的形式,或表示为幅度+相位的表达形式。
这里我们要牢记的是,在求傅里叶变换和傅里叶级数的过程种,我们要求正频率和负频率都存在,才能构建信号。

傅里叶级数与傅里叶变换存在什么关系呢?如果我们有一个周期信号,我们可以通过考察一个周期的傅里叶变换,从而求出其傅里叶变换系数。那么这个周期信号的傅里叶级数系数,则就是傅里叶变换系数包络中以一定的间隔所对应的一组样本。

傅里叶变换的一些特性

x(t)为实数时傅里叶变换的对称性

当x(t)为实数时,傅里叶变化的对称性如下:
x ( t ) ↔ F X ( w ) X ( − w ) = X ∗ ( w ) R e X ( w ) = R e X ( − w ) ∣ X ( w ) = ∣ X ( − w ) ∣ I m X ( w ) = − I m X ( − w ) ∡ X ( w ) = − ∡ ( − w ) x(t)\overset{F}{\leftrightarrow}X(w)\\X(-w)=X*(w)\\ReX(w)=ReX(-w)\\|X(w)=|X(-w)|\\ Im X(w)=-Im X(-w)\\ \measuredangle X(w)=-\measuredangle(-w) x(t)FX(w)X(w)=X(w)ReX(w)=ReX(w)X(w)=X(w)ImX(w)=ImX(w)X(w)=(w)
上述特性表明,当x(t)为实数时,经过傅里叶变换之后,傅里叶是一个复变函数,实部是频率的偶函数,幅度是频率的偶函数。虚部是频率的奇函数,相角是频率的奇函数。
总结来说,如果时间函数是实函数,傅里叶变换的实部或幅度是偶对称的,虚部或相角是奇对称的。
这样的话,根据对称性我们可以规定出正频率下的傅里叶变换,因为可以通过对称性推导出负频率下的性质。方便与实际工程中的应用。

时域和频域的变换关系

当x(t)在时域上成比例缩放a倍时,在频域上则缩放 1 / a 1/a 1/a

时域和频域的对偶关系

我们这里需要再回到傅里叶变换的综合方程:
x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( w ) e j w t d w X ( w ) = ∫ − ∞ + ∞ x ( t ) e − j w t d t x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(w)e^{jwt}dw\\ X(w)=\int_{-\infty}^{+\infty} x(t)e^{-jwt}dt x(t)=2π1+X(w)ejwtdwX(w)=+x(t)ejwtdt
仔细观察合成方程与分析方程,我们会发现两个方程之间有非常多的一个相似性。
我们可以推导出的对偶性是这样的:
x ( t ) ↔ F X ( w ) X ( t ) ↔ F 2 π x ( − w ) x(t)\overset{F}{\leftrightarrow}X(w)\\ X(t)\overset{F}{\leftrightarrow}2\pi x(-w) x(t)FX(w)X(t)F2πx(w)
这种连续时间傅里叶变换的对偶性非常重要。在离散时间的情况下,连续时间和离散时间傅里叶变换的重要区别之一就在于连续时间傅里叶变换具有对偶性,离散时间傅里叶变换则没有这种特性。
这种特性的典型例子就是矩形信号与sinc函数信号。

帕萨瓦尔关系

时间函数中的能量,和它的傅里叶变换能量成比例关系,比例因子是 2 π 2\pi 2π
∫ − ∞ + ∞ ∣ x ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ X ( w ) ∣ 2 d w \int_{-\infty}^{+\infty}|x(t)|^{2}dt=\frac{1}{2 \pi}\int_{-\infty}^{+\infty}|X(w)|^{2}dw\\ +x(t)2dt=2π1+X(w)2dw
1 T 0 ∫ T 0 ∣ x ~ ( t ) 2 ∣ d t = ∑ k = − ∞ + ∞ ∣ a k ∣ 2 \frac{1}{T_{0}}\int_{T_{0}}|\tilde{x}(t)^{2}|dt=\sum_{k=-\infty}^{+\infty}|a_{k}|^{2} T01T0x~(t)2dt=k=+ak2
x ~ \tilde{x} x~指的是周期信号x(t)在一个周期内的信号。

时间平移特性

时域上的平移会导致频域上的相位线性变化。
x ( t − t 0 ) ↔ F e − j w t 0 X ( w ) x(t-t_{0})\overset{F}{\leftrightarrow}e^{-jwt_{0}}X(w) x(tt0)Fejwt0X(w)

微分特性

微分特性可用来求解微分方程
d x ( t ) d t ↔ F j w X ( w ) \frac{dx(t)}{dt}\overset{F}{\leftrightarrow}jwX(w) dtdx(t)FjwX(w)
时间函数对时间求导后的傅里叶变换相当于傅里叶变换乘以频率的线性函数。傅里叶变换后的幅度呈线性变化。

积分特性

∫ − ∞ t x ( τ ) d τ ↔ F 1 j w X ( w ) + π X ( 0 ) δ ( w ) \int_{-\infty}^{t}x(\tau)d\tau\overset{F}{\leftrightarrow}\frac{1}{jw}X(w)+\pi X(0)\delta(w) tx(τ)dτFjw1X(w)+πX(0)δ(w)
积分特性与微分特性相比,在微分过程中,常数项会消失。而积分特性则会尽量去恢复这个常数项。因此,积分特性后面多了一项。

线性特性

a x 1 ( t ) + b x 2 ( t ) ↔ F a X 1 ( w ) + b X 2 ( w ) ax_{1}(t)+bx_{2}(t)\overset{F}{\leftrightarrow}aX_{1}(w)+bX_{2}(w) ax1(t)+bx2(t)FaX1(w)+bX2(w)

卷积特性

卷积特性是整个滤波概念的数学基础和概念基础。
卷积特性指的是,两个时间函数进行卷积之后做傅里叶变换,等于两个时间函数分别做傅里叶变换的乘积。
h ( t ) ∗ x ( t ) ↔ F H ( w ) X ( w ) h(t)*x(t)\overset{F}{\leftrightarrow}H(w)X(w) h(t)x(t)FH(w)X(w)
卷积特性告诉我们,如果将时间信号分解成一系列复指数,当信号通过LTI系统时,这些复指数分别得到频率响应的修正,即用频率响应乘以构成输入的复指数的振幅,它们的总和反过来就是将输出分解成复指数的形式。

调制特性

参考资料

1.《信号与系统》 奥本海姆版

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值