李宏毅机器学习笔记-transformer

一、内容介绍

在这里插入图片描述transformer是什么呢?是一个seq2seq的model。具体应用如上图所示,输入和输出的序列长度不固定,由model自己决定。
语音翻译指的是,直接输入一段语音信号,例如英文,输出的直接是翻译之后的中文。
在这里插入图片描述
seq2seq如今已经是一个应用非常广泛的模型,可以应用于NLP的各种任务,如语义分析,语义分类,聊天机器人等。另外还有个值得说明的功能是做multi label classification

multiclassification

multi label classificationmulti class classificatio是完全不一样的,一个是多分类,另一个是一个样本可以有多个标签。但是多标签的问题,可以用seq2seq模型来解决。
我们可以想下,如果让你来做多标签分类问题,会有什么思路。
一般人可能会想到,集成学习中,对每个类别都输出一个概率,然后例如说取一个threshold,取得分最高的前3名就好了,这样每个样本就都可以得到多个标签了。
这样做的一个问题在于,有些样本可能是一个标签,有些可能是3个,这种threshold的方法不能从根本上解决问题。
使用的方法就是用seq2seq硬做,可以输入一篇文章,然后输出就是不同的类别,输出类别的个数由model自己决定。
在这里插入图片描述
ok,我们现在开始正式学习什么是seq2seq。一个完整的seq2seq通常由一个encoder和一个decoder组成。上图右侧即为一个transformer架构。左半部分为encoder,右半部分为decoder
在这里插入图片描述
encoder要做的事情就在于,输入一排向量,输出另一排向量。这个过程由RNN或CNN,self-attention都可以做到。但在transformer中,使用的则是self attention

encoder

在这里插入图片描述
之前的图较为复杂,我们使用更简洁一些的图来解释encoder
如上图所示,一个encoder中由很多的block组成。注意,这里每个block并不是由一层的layer组成,而是好几层的layer。其中的一个block可能就如右侧所示,由一个self attention处理之后,再经过一个FC层得到进一步的输出。
在这里插入图片描述

在原始的那篇transfomer文章中,每个Block做的事情可能更为复杂。在self-attention的基础上还加入了residual connection的结构进去。什么意思呢,就是原本由self-attention,每个输入可以得到一个输出,这个输出是考虑了整个seq上下文信息的输出。但这个时候,我们在这个输出的基础上,再把原始的input加进去,这种思想就是residual connection.
做完residual connection之后,再做layer norm。这个layer norm很简单,就是输入一串序列[x1,x2,…,xk],输出另一串序列。对输入做的处理是计算均值和标准差,和zscore非常接近。
经过layer norm之后,讲输出经过一个FC,再和当前的值进行相加,最后再经过一个norm层,才是我们整个encoder最后的输出。最左侧的图和最右侧的图可以结合起来看。
在这里插入图片描述
现在,上述过程可以和前面那张较为复杂的图对应起来。复杂图里面多了一个positional encoding,因为在self attention必须考虑位置资讯,可以回归下self attention相关内容。然后上图中的Add & Norm就是residual connection layer norm的过程,feed forward则是一个Fully conneted network。另外,这里特地强调了是multihead attention
注意,上述只是按照transformer原始论文所讲述的encoder的架构,其中一些模块的顺序也可以直接调换。

decoder

ok,我们接下来讲解decoder
在这里插入图片描述
对于decoder主要有2种,我们主要先讲autoregression,AT
在这里插入图片描述
在经过encoder之后,会得到一排中间向量,将这些向量输入到decoder中,用于产生输出。这里注意,在产生输出前,我们会加上一个begin的标志,在输出结束后,还有一个end的标志。这两个标志属于模型自己要学习的东西,因此,这样就可以做到模型自己决定输出的长度是多少了。
这里,decoder会将上一个时刻的输出作为下一个时刻的输入。
这种情况可能会导致一个error propagation的问题,即一步错导致步步错。
当然,这个error propagation是有处理的办法的,我们先无视这个问题。
在这里插入图片描述
我们先将encoder部分忽视,decoder则为上述的样子。
在这里插入图片描述
我们将encoderdecoder进行对比,可以发现,其实2者的区别还是很小的,只有2部分不太一样,一个是用马赛克盖住的部分,另一个是masked multi-head attention

msak multi-head attention

在这里插入图片描述
self attentionmasked self attention的区别在于说,在普通的self attention中,我们由a1,a2,a3,a4生成b1,b2,b3,b4时,例如说生成b2,我们是考虑了a1,a2,a3,a4的所有信息的。
但是,在masked self attention中,我们要生成b2,只能考虑a1,a2的信息,不能考虑a3,a4的信息。
为什么要这样设计呢,我们想下decoder的运作方式,输出是一个一个产生的,所以,只能考虑之前输出的信息。
在这里插入图片描述
我们下面来开始讲另一种decoderNon-autoregressive, NAT
在这里插入图片描述
前面有讲到说,ATdecoder一个一个生成输出的,而NAT是一次性生成所有的输出的,包括startend
这里就会有人有疑问,不是说输出长度可能是不固定的吗?但是NAT输出长度是固定的怎么办?
有2种思路,一种是另外再训练一个回归预测器,预测输出的长度。第二种是在输出的中间加入end,在end之后的输出就不管他了,当作没有输出一样。

encoder和decoder如何传递咨询的-cross attention

在这里插入图片描述
ok,我们现在来讲下encoder和decoder之间的信息传递,也就是之前用马赛克盖住的那部分。这个过程也叫做cross attention。上图中左边2个箭头来自于encoder,右边1个来自于decoder
在这里插入图片描述
具体来说呢,左边经过encoder之后会得到一系列的a1,a2,a3等输出向量,类似于self attention过程,产生k,v。右侧decoder经过masked self attention之后,得到一个输出向量q,由q,k之间计算得到attention acore α 1 ′ \alpha_{1}' α1,与对应的v1相乘之后得到总的输出v,最后再进入FC层进行处理。这个过程就叫做cross attention

train

在这里插入图片描述
ok,讲完encoderdecoder之后,我们需要讲下训练的部分。
在这里插入图片描述
这里跟普通的分类比较像,使用cross entropy作为损失函数。
在这里插入图片描述
这里,在训练decoder时,我们会讲正确的答案作为decoder的输入,这个过程叫做teacher forcing
这里就需要讲下之前所提到的那个问题,decoder在训练时,输入是正确的答案,但是在测试时,没有正确的答案给到进行输入。那么decoder就很容易产生一步错,步步错的问题。这个问题也叫做exposure bias。一个可能解决该问题的方向是scheduled sampling,就是在训练decoder时偶尔喂给一些不正确的数据,提升decoder的处理问题的能力,就这么简单。

二、transformer的代码实现

2.1需求

假设我存在一个dataset,前10列为特征,最后1列为标签,我们现在来实现一下transformer做一个分类任务。

2.2 实现

2.2.1 如何实现position-encoding

import torch
import torch.nn as nn

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=512):# max_len表示最大的可能的序列长度,可以设置的大一些
        super(PositionalEncoding, self).__init__()
        self.encoding = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1).float()
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        self.encoding[:, 0::2] = torch.sin(position * div_term)
        self.encoding[:, 1::2] = torch.cos(position * div_term)
        self.encoding = self.encoding.unsqueeze(0)

    def forward(self, x):
        return x + self.encoding[:, :x.size(1)].detach()

# Example usage
d_model = 512
max_len = 100
positional_encoding = PositionalEncoding(d_model, max_len)

input_sequence = torch.rand(1, max_len, d_model)
output_sequence = positional_encoding(input_sequence)
print(input_sequence )
print(output_sequence )
# output
torch.Size([1, 100, 512])
torch.Size([1, 100, 512])

在这里插入图片描述

2.2.2 Transformer,TransformerEncoder,TransformerEncoderLayer

torch.nn中共有3个相关的实现函数,先简述下区别
总体而言,Transformer 是整个模型,TransformerEncoder 是模型中的编码器部分,而 TransformerEncoderLayer 是编码器中的一个层。Transformer 模型的设计允许通过堆叠多个编码器层来捕捉输入序列的复杂关系,同时保持了模型的并行性。
我们再来依次看下这些函数

Transformer

在这里插入图片描述
在这里插入图片描述
看下输入都有哪些
d_model,表示输入input的特征维度,默认是512.
nhead,表示multiheadattention模块中的nhead的数量
num_encoder_layers表示在encodersubencoder的数量,默认是6
num_decoder_layers表示在decodersubdecoder的数量,默认值也是6
dropout,无需多言
activateion,表示激活函数,可以选择relugelu,默认relu
custom_encodercustom_decoder是可选的自定义的编码解码函数
batch_first,指定的输入的摆列顺序是batch_size在前还是seq_len在前。
norm_first,如果为True,则在经过multiheadattention之后,去到其他attentionfeedforward之前会先进行LayerNorms,默认是Fault,即在最后经过feedforward之后再进行layerNorm.

import torch
import torch.nn as nn
import math


transformer_model = nn.Transformer(nhead=16 , num_encoder_layers=1,num_decoder_layers=1)
print(transformer_model)
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
out = transformer_model(src, tgt)
print(out.shape)
Transformer(
  (encoder): TransformerEncoder(
    (layers): ModuleList(
      (0): TransformerEncoderLayer(
        (self_attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (linear1): Linear(in_features=512, out_features=2048, bias=True)
        (dropout): Dropout(p=0.1, inplace=False)
        (linear2): Linear(in_features=2048, out_features=512, bias=True)
        (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (dropout1): Dropout(p=0.1, inplace=False)
        (dropout2): Dropout(p=0.1, inplace=False)
      )
    )
    (norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  )
  (decoder): TransformerDecoder(
    (layers): ModuleList(
      (0): TransformerDecoderLayer(
        (self_attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (multihead_attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (linear1): Linear(in_features=512, out_features=2048, bias=True)
        (dropout): Dropout(p=0.1, inplace=False)
        (linear2): Linear(in_features=2048, out_features=512, bias=True)
        (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (dropout1): Dropout(p=0.1, inplace=False)
        (dropout2): Dropout(p=0.1, inplace=False)
        (dropout3): Dropout(p=0.1, inplace=False)
      )
    )
    (norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  )
)
torch.Size([20, 32, 512])

可以看到,正常的一个transformer同时包含了encoderdecoder,是比较完整的模型。

transformerencoder

在这里插入图片描述
这里比较简单,在定义TransformerEncoder类之前一般都会预先定义一个TransformerEncoderlayer类,然后再通过TransformerEncoder类进行实例化。

TransformerEncoderLayer

在这里插入图片描述
TransformerEncoderLayer 主要由self-attn and feedforward network组成。
参数如下:
在这里插入图片描述
d_model表示输入的特征维度
nhead表示multiheadattention 中头的数量
dim_feedforward 表示所接的全连接层的维度

import torch
import torch.nn as nn
import math


encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8,dim_feedforward=1000)
print(encoder_layer)
src = torch.rand(10, 32, 512)
out = encoder_layer(src)
print(out.shape)
# output
TransformerEncoderLayer(
  (self_attn): MultiheadAttention(
    (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
  )
  (linear1): Linear(in_features=512, out_features=1000, bias=True)
  (dropout): Dropout(p=0.1, inplace=False)
  (linear2): Linear(in_features=1000, out_features=512, bias=True)
  (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  (dropout1): Dropout(p=0.1, inplace=False)
  (dropout2): Dropout(p=0.1, inplace=False)
)
torch.Size([10, 32, 512])
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
李宏毅是一位著名的机器学习深度学习专家,他在教学视频中也提到了Transformer模型。下面是一些关于李宏毅关于Transformer笔记总结: 1. Transformer 是一种基于注意力机制(attention mechanism)的序列到序列(sequence-to-sequence)模型。它在自然语言处理任务中取得了很大的成功。 2. Transformer 模型的核心思想是完全摒弃了传统的循环神经网络(RNN)结构,而是采用了自注意力机制(self-attention mechanism)来建模输入序列之间的依赖关系。 3. 自注意力机制能够将输入序列中的每个位置与其他位置建立联系,从而捕捉到全局上下文的信息。它能够解决传统的RNN模型在处理长序列时的梯度消失和梯度爆炸问题。 4. Transformer 模型由编码器(Encoder)和解码器(Decoder)两部分组成。编码器负责将输入序列表示为高维向量,解码器则根据编码器的输出生成目标序列。 5. 编码器和解码器由多个层堆叠而成,每一层都包含了多头自注意力机制和前馈神经网络。多头自注意力机制可以并行地学习输入序列中不同位置之间的关系。 6. Transformer 模型还引入了残差连接(residual connection)和层归一化(layer normalization)来帮助模型更好地进行训练和优化。 这些是李宏毅关于Transformer的一些主要笔记总结,希望对你有所帮助。注意,这些总结仅代表了我对李宏毅在其教学视频中所讲述内容的理解,如有误差请以李宏毅本人的观点为准。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值