扩展gcd 逆元

扩展gcd:已知ax+by=gcd(a,b),求x,y。

①由gcd(a,b)= =gcd(b,a%b)得ax+by==bx+(a%b)y,继续化下去,化成ax1+by1的形式即为递归转移式,因为递归过程中a,b不能改变,改的是x,y。

bx+(a%b)y = = bx+ (a-(a/b)b)y = = bx+ay-(a/b)by == ay + b(x-a/by)

即exgcd(ax+by)== exgcd( ay + b(x-a/b*y) )

然后就可以递归求解了,共用相同的x,y,可以全局,下面代码是用引用实现。

②递归终止:当b= =0时,式子为ax==gcd(a,b),那么显然a=gcd(a,b),x=1,y=0;
//扩展gcd求解x,y的同时还把gcd(a, b)求出来了。exgcd的返回值就是gcd(a,b)

ll exgcd(ll a, ll b, ll &x, ll &y)  
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll d = exgcd(b, a % b, x, y);
    ll t = x;
    x = y;
    y = t - (a / b) * y;
    return d;
}

扩展gcd求出一个解后,那ax+by=gcd(a,b)的其他解为x=x0+kb; y=y0-ka;
那么ax+by=c就不难了,将ax+by=gcd(a,b)两边除以gcd可得,那么代码中就正常求exgcd,解x=c/gcdx0,y=c/gcdy0。(x0,y0为exgcd的解)

这里注意:x=c/gcdx0 与 x=x0/gcdc 不等价!有解情况下gcd一定是c的因子,而x0不一定是。

如83/2=12而8(3/2)!=12。 当然x也可以=c*x0/gcd,不过要小心溢出。

ax+by=c无整数解的情况:c不能被gcd(a,b)整除(也即c不是gcd(a,b)的倍数)。

理由:因为ax与by均是gcd(a,b)的倍数,所以其和ax+by也是gcd(a,b)的倍数。

乘法逆元

满足a*x≡1 (mod p)的x值

通俗理解:(1/a)mod p 和 (a的逆元)mod p一样

作用:求(a/b)%p,当a过大,导致a/b无法直接求得时可以先求b对p的逆元x,再乘a去mod p,即

(a*x)%p和(a/b)%p结果是一样的

逆元求法

ll inverse(ll num,ll mod)  
{  
    ll x,y;  
    exgcd(num,mod,x,y);  
    while(x<0) x+=mod,y-=num;  
    return x;  
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值