0动态规划中等 LeetCode764. 最大加号标志

博客讨论了LeetCode764问题,即在给定的矩阵grid中找到最大轴对齐加号标志的阶数。在含有0和1的矩阵中,加号标志由1组成且对称。文章采用动态规划策略,通过dp数组记录当前位置右侧1的个数,从而计算四个方向上加号标志的长度,最终得出最大阶数。
摘要由CSDN通过智能技术生成

764. 最大加号标志

描述

在一个 n x n 的矩阵 grid 中,除了在数组 mines 中给出的元素为 0,其他每个元素都为 1。mines[i] = [xi, yi]表示 grid[xi][yi] == 0

返回 grid 中包含 1 的最大的 轴对齐 加号标志的阶数 。如果未找到加号标志,则返回 0 。

一个 k 阶由 1 组成的 “轴对称”加号标志 具有中心网格 grid[r][c] == 1 ,以及4个从中心向上、向下、向左、向右延伸,长度为 k-1,由 1 组成的臂。注意,只有加号标志的所有网格要求为 1 ,别的网格可能为 0 也可能为 1 。

示例 1:



输入: n = 5, mines = [[4, 2]]
输出: 2
解释: 在上面的网格中,最大加号标志的阶只能是2。一个标志已在图中标出。
示例 2:



输入: n = 1, mines = [[0, 0]]
输出: 0
解释: 没有加号标志,返回 0 。
 

提示:

1 <= n <= 500
1 <= mines.length <= 5000
0 <= xi, yi < n
每一对 (xi, yi) 都 不重复

分析

动态规划
dp[i][j][0] 表示(i,j)位置他的右边1的个数。
分别计算四个方向上的k值,当前值可以通过它前面(/下面/右面/左面)的值得到。
上下左右都这样求,可以使用O(1)的方式求得一个位置的k值。

class Solution {
   
    public int orderOfLargestPlusSign(int n, int[][] mines) {
   
        int[][] grid = new int[n][n];
        for (int[] arr : grid) {
   
            Arrays.fill(arr,1);
        }
        for (int[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值