描述
在一个 n x n 的矩阵 grid 中,除了在数组 mines 中给出的元素为 0,其他每个元素都为 1。mines[i] = [xi, yi]表示 grid[xi][yi] == 0
返回 grid 中包含 1 的最大的 轴对齐 加号标志的阶数 。如果未找到加号标志,则返回 0 。
一个 k 阶由 1 组成的 “轴对称”加号标志 具有中心网格 grid[r][c] == 1 ,以及4个从中心向上、向下、向左、向右延伸,长度为 k-1,由 1 组成的臂。注意,只有加号标志的所有网格要求为 1 ,别的网格可能为 0 也可能为 1 。
示例 1:
输入: n = 5, mines = [[4, 2]]
输出: 2
解释: 在上面的网格中,最大加号标志的阶只能是2。一个标志已在图中标出。
示例 2:
输入: n = 1, mines = [[0, 0]]
输出: 0
解释: 没有加号标志,返回 0 。
提示:
1 <= n <= 500
1 <= mines.length <= 5000
0 <= xi, yi < n
每一对 (xi, yi) 都 不重复
分析
动态规划
dp[i][j][0] 表示(i,j)位置他的右边1的个数。
分别计算四个方向上的k值,当前值可以通过它前面(/下面/右面/左面)的值得到。
上下左右都这样求,可以使用O(1)的方式求得一个位置的k值。
class Solution {
public int orderOfLargestPlusSign(int n, int[][] mines) {
int[][] grid = new int[n][n];
for (int[] arr : grid) {
Arrays.fill(arr,1);
}
for (int[