LeetCode 764. 最大加号标志 -- 前缀和

  1. 最大加号标志
    中等
    158
    相关企业
    在一个 n x n 的矩阵 grid 中,除了在数组 mines 中给出的元素为 0,其他每个元素都为 1。mines[i] = [xi, yi]表示 grid[xi][yi] == 0

返回 grid 中包含 1 的最大的 轴对齐 加号标志的阶数 。如果未找到加号标志,则返回 0 。

一个 k 阶由 1 组成的 “轴对称”加号标志 具有中心网格 grid[r][c] == 1 ,以及4个从中心向上、向下、向左、向右延伸,长度为 k-1,由 1 组成的臂。注意,只有加号标志的所有网格要求为 1 ,别的网格可能为 0 也可能为 1 。

示例 1:
在这里插入图片描述

输入: n = 5, mines = [[4, 2]]
输出: 2
解释: 在上面的网格中,最大加号标志的阶只能是2。一个标志已在图中标出。
示例 2:
在这里插入图片描述

在这里插入图片描述

输入: n = 1, mines = [[0, 0]]
输出: 0
解释: 没有加号标志,返回 0 。

提示:

1 <= n <= 500
1 <= mines.length <= 5000
0 <= xi, yi < n
每一对 (xi, yi) 都 不重复

题解

就是前缀和,分别在4个方向上统计下即可。

AC代码

class Solution {
public:
    int mp[505][505],ans[505][505][4];
    int orderOfLargestPlusSign(int n, vector<vector<int>>& mines) {
        memset(mp,0,sizeof(mp));
        memset(ans,0,sizeof(ans));
        for(int i=0;i<mines.size();i++)
        {
            mp[mines[i][0]][mines[i][1]] = 1;
        }
        for(int i=0;i<n;i++)
        {
            int sum = 0;
            for(int j=0;j<n;j++)
            {
                if(mp[i][j]==0)
                sum += 1;
                else
                sum = 0;
                ans[i][j][0] = sum;
            }
            sum = 0;
            for(int j=n-1;j>=0;j--)
            {
                if(mp[i][j]==0)
                sum += 1;
                else
                sum = 0;
                ans[i][j][1] = sum;
            }
        }
        for(int j=0;j<n;j++)
        {
            int sum = 0;
            for(int i=0;i<n;i++)
            {
                if(mp[i][j]==0)
                sum += 1;
                else
                sum = 0;
                ans[i][j][2] = sum;
            }
            sum = 0;
            for(int i=n-1;i>=0;i--)
            {
                if(mp[i][j]==0)
                sum += 1;
                else
                sum = 0;
                ans[i][j][3] =sum;
            }
        }
        
        int res = 0;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                int mi = 1e9;
                for(int k=0;k<4;k++)
                mi = min(mi,ans[i][j][k]);
                res = max(res, mi);
            }
        }
        return res;

    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值