- 最大加号标志
中等
158
相关企业
在一个 n x n 的矩阵 grid 中,除了在数组 mines 中给出的元素为 0,其他每个元素都为 1。mines[i] = [xi, yi]表示 grid[xi][yi] == 0
返回 grid 中包含 1 的最大的 轴对齐 加号标志的阶数 。如果未找到加号标志,则返回 0 。
一个 k 阶由 1 组成的 “轴对称”加号标志 具有中心网格 grid[r][c] == 1 ,以及4个从中心向上、向下、向左、向右延伸,长度为 k-1,由 1 组成的臂。注意,只有加号标志的所有网格要求为 1 ,别的网格可能为 0 也可能为 1 。
示例 1:
输入: n = 5, mines = [[4, 2]]
输出: 2
解释: 在上面的网格中,最大加号标志的阶只能是2。一个标志已在图中标出。
示例 2:
在这里插入图片描述
输入: n = 1, mines = [[0, 0]]
输出: 0
解释: 没有加号标志,返回 0 。
提示:
1 <= n <= 500
1 <= mines.length <= 5000
0 <= xi, yi < n
每一对 (xi, yi) 都 不重复
题解
就是前缀和,分别在4个方向上统计下即可。
AC代码
class Solution {
public:
int mp[505][505],ans[505][505][4];
int orderOfLargestPlusSign(int n, vector<vector<int>>& mines) {
memset(mp,0,sizeof(mp));
memset(ans,0,sizeof(ans));
for(int i=0;i<mines.size();i++)
{
mp[mines[i][0]][mines[i][1]] = 1;
}
for(int i=0;i<n;i++)
{
int sum = 0;
for(int j=0;j<n;j++)
{
if(mp[i][j]==0)
sum += 1;
else
sum = 0;
ans[i][j][0] = sum;
}
sum = 0;
for(int j=n-1;j>=0;j--)
{
if(mp[i][j]==0)
sum += 1;
else
sum = 0;
ans[i][j][1] = sum;
}
}
for(int j=0;j<n;j++)
{
int sum = 0;
for(int i=0;i<n;i++)
{
if(mp[i][j]==0)
sum += 1;
else
sum = 0;
ans[i][j][2] = sum;
}
sum = 0;
for(int i=n-1;i>=0;i--)
{
if(mp[i][j]==0)
sum += 1;
else
sum = 0;
ans[i][j][3] =sum;
}
}
int res = 0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
int mi = 1e9;
for(int k=0;k<4;k++)
mi = min(mi,ans[i][j][k]);
res = max(res, mi);
}
}
return res;
}
};