用神经网络实现三分类

该代码示例展示了如何在PyTorch中创建一个简单的神经网络来分类数据。数据是通过`sklearn.datasets.make_blobs`生成的,网络包含一个隐藏层,使用ReLU激活函数,并用SGD优化器进行训练。同时,利用matplotlib实时更新学习过程中的预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码

import torch
import torch.nn.functional as F
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

# make fake data
x,target_y = make_blobs(n_samples=300, n_features=2, centers=[[5,5],[-5,-5],[0,0]], random_state=0)

# The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x), Variable(y)

# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()


class Net(torch
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值