2D-LSTM

LSTM

Understanding LSTM Networks人人都能看懂的LSTM 这两篇文章介绍了 LSTM 的原理。

2D-LSTM

2D-LSTM 是作用于三维输入( W × H × D W \times H \times D W×H×D )的 LSTM ,分别取横向和纵向上一时刻的隐藏状态和输出作为该时刻的输入,如下图所示
在这里插入图片描述
数据传播的顺序依靠对角线原则,如下图所示
在这里插入图片描述
图中的数字表示计算的顺序。
下图展示了 2D-LSTM 单元的结构,蓝线表示与标准单元不同的地方。
在这里插入图片描述
上图中 x j , i x_{j, i} xj,i 为当前的输入, s j , i − 1 s_{j, i-1} sj,i1 为上一时刻横向的输出, s j − 1 , i s_{j-1, i} sj1,i 为上一时刻纵向的输出。
input gate
i j , i = σ ( W 1 x j , i + U 1 s j − 1 , i + V 1 s j , i − 1 ) i_{j, i} = \sigma(W_1x_{j, i} + U_1s_{j-1, i} + V_1s_{j, i-1}) ij,i=σ(W1xj,i+U1sj1,i+V1sj,i1)
output gate
o j , i = σ ( W 2 x j , i + U 2 s j − 1 , i + V 2 s j , i − 1 ) o_{j, i} = \sigma(W_2x_{j, i} + U_2s_{j-1, i} + V_2s_{j, i-1}) oj,i=σ(W2xj,i+U2sj1,i+V2sj,i1)
candidate value
c ^ j , i = g ( W 3 x j , i + U 3 s j − 1 , i + V 3 s j , i − 1 ) \hat{c}_{j, i} = g(W_3x_{j, i} + U_3s_{j-1, i} + V_3s_{j, i-1}) c^j,i=g(W3xj,i+U3sj1,i+V3sj,i1)
forget gate
f j , i = σ ( W 4 x j , i + U 4 s j − 1 , i + V 4 s j , i − 1 ) f_{j, i} = \sigma(W_4x_{j, i} + U_4s_{j-1, i} + V_4s_{j, i-1}) fj,i=σ(W4xj,i+U4sj1,i+V4sj,i1)
2D-LSTM 新加入了一个系数,用于比较 s j − 1 , i s_{j-1, i} sj1,i s j , i − 1 s_{j, i-1} sj,i1 的重要程度。
λ j , i = σ ( W 5 x j , i + U 5 s j − 1 , i + V 5 s j , i − 1 ) \lambda_{j, i} = \sigma(W_5x_{j, i} + U_5s_{j-1, i} + V_5s_{j, i-1}) λj,i=σ(W5xj,i+U5sj1,i+V5sj,i1)
新状态
c j , i = f j , i ∘ [ λ j , i ∘ c j − 1 , i + ( 1 − λ j , i ) ∘ c j , i − 1 ] + c ^ j , i ∘ i j , i c_{j, i} = f_{j, i} \circ [\lambda_{j, i} \circ c_{j-1, i} + (1 - \lambda_{j, i}) \circ c_{j, i-1}] + \hat{c}_{j, i} \circ i_{j, i} cj,i=fj,i[λj,icj1,i+(1λj,i)cj,i1]+c^j,iij,i
输出
s j , i = g ( c j , i ∘ o j , i ) s_{j, i} = g(c_{j, i} \circ o_{j, i}) sj,i=g(cj,ioj,i)

Reference

[1] Bahar, P. , C. Brix , and H. Ney . “Towards Two-Dimensional Sequence to Sequence Model in Neural Machine Translation.” (2018).
[2] Voigtlaender, P. , P. Doetsch , and H. Ney . “Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks.” 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) IEEE, 2017.

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1DCNN-LSTM是一种神经网络模型,结合了一维卷积神经网络(1DCNN)和长短期记忆网络(LSTM)。这种模型主要用于处理具有时间序列特征的数据。 在1DCNN-LSTM模型中,一维卷积神经网络用于提取输入数据中的空间特征,而LSTM用于捕捉时间序列中的长期依赖关系。通过结合这两种网络结构,1DCNN-LSTM模型能够同时考虑时间和空间的信息,从而更好地理解数据的特征。 具体来说,1DCNN-LSTM模型首先使用一维卷积层对输入数据进行卷积操作,以提取空间特征。然后,卷积后的特征被输入到LSTM层中,用于学习时间序列中的依赖关系。最后,通过全连接层将LSTM层的输出映射到所需的输出。 1DCNN-LSTM模型在处理时间序列数据方面具有很好的性能,尤其适用于具有复杂时间依赖关系的任务,如自然语言处理、语音识别和股票预测等。 范例:<<引用:我们选择一维CNN作为CNN架构,对于RNN,我们将评估GRU和LSTM的性能,我们将与1D-CNN结合在一起。引用:我们的CNN-LSTM模型引入了3D卷积神经网络(3DCNN)和2D卷积神经网络2DCNN),以了解台风形成特征之间的空间关系。>> 1DCNN-LSTM模型结合了一维卷积神经网络(1DCNN)和长短期记忆网络(LSTM)。它可以用于处理具有时间序列特征的数据,并同时考虑时间和空间的信息。这种模型在处理具有复杂时间依赖关系的任务方面表现出色,例如自然语言处理和股票预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值