吊儿郎当的凡
码龄6年
关注
提问 私信
  • 博客:36,233
    社区:30
    36,263
    总访问量
  • 33
    原创
  • 1,210,515
    排名
  • 16
    粉丝
  • 0
    铁粉

个人简介:但行好事 莫问前程

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-09-24
博客简介:

weixin_43269419的博客

查看详细资料
个人成就
  • 获得44次点赞
  • 内容获得9次评论
  • 获得93次收藏
创作历程
  • 12篇
    2022年
  • 21篇
    2021年
成就勋章
TA的专栏
  • 算法
    2篇
  • 数学基础
    4篇
  • RNA结构预测
    13篇
  • 图表示学习
    7篇
  • GFlowNet
    5篇
  • 笔记
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Probability Density Reweight

概率密度 reweight
原创
发布博客 2022.07.28 ·
286 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

DDPM( Denoising Diffusion Probabilistic Model )

介绍 DDPM( Denoising Diffusion Probabilistic Model )的算法原理
原创
发布博客 2022.07.20 ·
3705 阅读 ·
7 点赞 ·
5 评论 ·
21 收藏

JTVAE( Junction Tree Variational Autoencoder )

Junction Tree Variational Autoencoder for Molecular Graph GenerationYear: 2018Authors: Wengong Jin, Regina Barzilay, Tommi JaakkolaJournal Name: ICMLInnovation
原创
发布博客 2022.04.10 ·
1983 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

VGAE( Variational Graph Auto-Encoder )

Variational Graph Auto-EncodersYear: 2016Authors: Thomas N. Kipf, Max WellingJournal Name: NIPSDefinitions定义含有 N=∣V∣N=|V|N=∣V∣ 个节点的无向图 G=(V,E)\mathcal{G}=(\mathcal{V}, \mathcal{E})G=(V,E) ,邻接矩阵 AAA 和度矩阵 DDD ,再引入 N×FN \times FN×F 大小的隐变量矩阵 Z=[z1;z2;...;
原创
发布博客 2022.03.18 ·
979 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

De Novo Prediction of RNA 3D Structures with Deep Learning

De Novo Prediction of RNA 3D Structures with Deep LearningYear: 2022Authors: Julius Ramakers, Christopher Frederik Blum, Sabrina K¨onig, Stefan Harmeling, Markus KollmannJournal Name: bioxiv1 Innovation结合自回归深度生成模型、蒙特卡罗树搜索和分数模型预测 RNA 三维折叠结构。2 Method
原创
发布博客 2022.03.12 ·
2008 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

PINN potentials

Physically informed artificial neural networks for atomistic modeling of materialsYear: 2019Authors: G. P. Purja Pun, R. Batra, R. Ramprasad & Y. MishinJournal Name: Nature CommunicationsInnovation扩展物理模型,使其具有广泛适用性,即在训练集覆盖不到的数据中也能适用。引入与局部结构参数 Gil
原创
发布博客 2022.02.17 ·
464 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

RNAcmap--predicting contact maps of RNAs by evolutionary coupling analysis

RNAcmap: a fully automatic pipeline for predicting contact maps of RNAs by evolutionary coupling analysisYear: 2021Authors: Tongchuan Zhang, Jaswinder Singh, Thomas Litfin, Jian Zhan, Kuldip Paliwal and Yaoqi ZhouJournal Name: BioinformaticsMotivation
原创
发布博客 2022.01.26 ·
414 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ARES( Atomic Rotationally Equivariant Scorer )

Geometric deep learning of RNA structureYear: 2021Authors: Raphael J. L. Townshend, Stephan Eismann, Andrew M. Watkins, Ramya Rangan, Maria Karelina, Rhiju Das, Ron O. DrorJournal Name: ScienceDatasetBackgroundMethodEquivariant convolution等变卷积基于滤波
原创
发布博客 2022.01.24 ·
523 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

GFlowNet Foundation 笔记(五)

系列文章GFlowNet Foundation 笔记(一)GFlowNet Foundation 笔记(二)GFlowNet Foundation 笔记(三)GFlowNet Foundation 笔记(四)期望的奖励和奖励最大策略Def 37. 对于在终止状态上的任意分布 Pπ(s)P_{\pi}(s)Pπ​(s) ,期望奖励( expected reward ) 为VPπ(s)=EPπ(S)[R(S)∣S≥s]=∑s′≥sR(s′)Pπ(s′∣s≤s′)V_{P_{\pi}}(s) =
原创
发布博客 2022.01.07 ·
784 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

GFlowNet Foundation 笔记(四)

系列文章GFlowNet Foundation 笔记(一)GFlowNet Foundation 笔记(二)GFlowNet Foundation 笔记(三)确定环境和随机环境中的策略Def 34. 策略( policy ) π:A×S↦R\pi: \mathcal{A} \times \mathcal{S} \mapsto \Rπ:A×S↦R 为概率分布 π(a∣s)\pi (a | s)π(a∣s) 。其中,行动 a∈Aa \in \mathcal{A}a∈A ,定义 A(s)\mathcal
原创
发布博客 2022.01.07 ·
1197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GFlowNet Foundation 笔记(三)

系列文章GFlowNet Foundation 笔记(一)GFlowNet Foundation 笔记(二)条件流与自由能Def 24. 已知自由能 F(s)\mathcal{F}(s)F(s)e−F(s)=∑s′:s′≥sR(s′)=∑s′:s′≥se−F(s′)e^{-\mathcal{F}(s)} = \sum_{s': s' \ge s} R(s') = \sum_{s': s' \ge s} e^{-\mathcal{F}(s')}e−F(s)=s′:s′≥s∑​R(s′)=s′:s
原创
发布博客 2022.01.04 ·
674 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GFlowNet Foundation 笔记(二)

学习流量Def 18. GFlowNet 可用 (F^(s),P^F(st+1∣st))(\hat{F}(s), \hat{P}_F(s_{t+1} | s_t))(F^(s),P^F​(st+1​∣st​)) 表示。从终止流量估计转移概率终止流量对应终止奖励函数 RRRR(s)=F(s→sf)R(s) = F(s \rightarrow s_f)R(s)=F(s→sf​)推论3. 上面的式子可以推导出总流量Z=F(s0)=F(sf)=∑s∈Par(sf)R(s)Z = F(s_0) =
原创
发布博客 2022.01.01 ·
628 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

GFlowNet Foundation 笔记(一)

马尔可夫流量的测量轨迹( trajectories )和流量( flows )Def 1. 一个有向图用 (S,A)(\mathcal{S}, \mathbb{A})(S,A) 表示,其中 S\mathcal{S}S 为状态的集合, A\mathbb{A}A 为 S×S\mathcal{S} \times \mathcal{S}S×S 大小的有向边的子集。 A\mathbb{A}A 中的元素表示为 s→s′s \rightarrow s's→s′ ,叫做 边缘( edges ) 或 转移( transi
原创
发布博客 2021.12.28 ·
1235 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

坐标上升变分推断( Coordinate Ascent Variational Inference, CAVI)

变分推断是为了近似获得 P(Z∣X)P(Z | X)P(Z∣X) ,即隐状态的后验分布。logP(X)=logP(X,Z)−logP(Z∣X)=logP(X,Z)q(Z)−logP(Z∣X)q(Z)\begin{aligned} log P(X) &= log P(X, Z) - log P(Z | X) \\ &= log \frac{P(X, Z)}{q(Z)} - log \frac{P(Z | X)}{q(Z)}\end{aligned}logP(X)​=logP(X,Z
原创
发布博客 2021.12.19 ·
694 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

估计参数的均方误差

花书 5.4.45.4.45.4.4 中说均方误差( MSE )度量着估计 θ^\hat{\theta}θ^ 和真实参数 θ\thetaθ 之间平方误差的总体期望偏差,但没有进行证明,现将推导过程展示在下面MSE=E[(θ^−θ)2]=E[((θ^−E(θ^))+(E(θ^)−θ))2]=E[(θ^−E(θ^))2]+E[(E(θ^)−θ)2]+2E[(θ^−E(θ^))(E(θ^)−θ)]=E[(θ^−E(θ^))2]+(E(θ^)−θ)2+2(E(θ^)−E(θ^))(E(θ^)−θ)=Var(θ^)
原创
发布博客 2021.11.30 ·
1609 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

方向导数 directional derivative

最近在看花书,其中 4.3 中提到了方向导数当 α=0\alpha = 0α=0 时, ∂∂αf(x+αu)=uT∇xf(x)\frac{\partial}{\partial \alpha}f(\textbf{x} + \alpha \textbf{u}) = \textbf{u}^T
abla_xf(\textbf{x})∂α∂​f(x+αu)=uT∇x​f(x) 是怎么得出的?根据全微分∂f(x+αu)=∂f(x1+αu1)∂x1⋅∂(x1+αu1)+⋯+∂f(xn+αun)∂xn⋅∂(xn+
原创
发布博客 2021.11.27 ·
796 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

传统图生成方法

系列文章《Graph Representation Learning》笔记 Chapter2《Graph Representation Learning》笔记 Chapter3《Graph Representation Learning》笔记 Chapter4《Graph Representation Learning》笔记 Chapter5《Graph Representation Learning》笔记 Chapter6传统方法概述我们可以将生成过程指定为计算 P(A[u,v]=1)P(A
原创
发布博客 2021.11.25 ·
930 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《Graph Representation Learning》笔记 Chapter6

系列文章《Graph Representation Learning》笔记 Chapter2《Graph Representation Learning》笔记 Chapter3《Graph Representation Learning》笔记 Chapter4《Graph Representation Learning》笔记 Chapter5目录Applications and Loss FunctionsGNNs for Node ClassificationGNNs for Graph Cla
原创
发布博客 2021.11.25 ·
553 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《Graph Representation Learning》笔记 Chapter5

系列文章《Graph Representation Learning》笔记 Chapter2《Graph Representation Learning》笔记 Chapter3《Graph Representation Learning》笔记 Chapter4目录Permutation invariance and equivarianceNeural Message PassingOverview of the Message Passing FrameworkPermutation invar
原创
发布博客 2021.11.25 ·
2619 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

BLAST

Basic Local Alignment Search ToolYear: 1990Authors: Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers and David J. LipmanJournal Name: Journal of Molecular BiologyAbstract一个快速进行序列比较的新方法:基本局部比对搜索工具( basic local alignment search tool, BLAST
原创
发布博客 2021.11.24 ·
269 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多