Flink整理(2)

Flink整理(2)

一,Flink 流处理Api

在这里插入图片描述

1.1 Environment

1.1.1 getExecutionEnvironment

​ 创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。

val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val env = StreamExecutionEnvironment.getExecutionEnvironment

​ 如果没有设置并行度,会以flink-conf.yaml中的配置为准,默认是1 。

在这里插入图片描述

1.1.2 createLocalEnvironment

​ 返回本地执行环境,需要在调用时指定默认的并行度。

val env = StreamExecutionEnvironment.createLocalEnvironment(1)
1.2.3 createRemoteEnvironment

​ 返回集群执行环境,将Jar提交到远程服务器。需要在调用时指定JobManager的IP和端口号,并指定要在集群中运行的Jar包。

val env = ExecutionEnvironment.createRemoteEnvironment("jobmanage-hostname", 6123,"YOURPATH//wordcount.jar")

1.2 Source

1.2.1 从集合中读取数据
// 定义样例类,传感器id,时间戳,温度
case class SensorReading(id: String, timestamp: Long, temperature: Double)

object Sensor {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val stream1 = env
      .fromCollection(List(
        SensorReading("sensor_1", 1547718199, 35.80018327300259),
        SensorReading("sensor_6", 1547718201, 15.402984393403084),
        SensorReading("sensor_7", 1547718202, 6.720945201171228),
        SensorReading("sensor_10", 1547718205, 38.101067604893444)
      ))

    stream1.print("stream1:").setParallelism(1)

    env.execute()
  }
}
1.2.2 从文件中读取数据
val stream2 = env.readTextFile("YOUR_FILE_PATH")
1.2.3 以kafka消息队列的数据作为来源
import java.util.Properties

import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09
import org.apache.flink.streaming.api.scala._
object SourceKafkaDemo {


  def main(args: Array[String]): Unit = {

    val env = StreamExecutionEnvironment.getExecutionEnvironment

    val pro  = new Properties()
    pro.setProperty("bootstrap.servers","113.31.112.55:9092")
    pro.setProperty("group.id","consumer-group")
    pro.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer")
    pro.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer")
    pro.setProperty("auto.offset.reset", "latest")

    val stream = env.addSource(
        //分别指定topic名称 vlaue序列化类 和kafka配置
      new FlinkKafkaConsumer09[String]("test",new SimpleStringSchema(),pro))
    stream.print().setParallelism(1)

    env.execute("flink-kafka")

  }

}
  • Flink+kafka是如何实现exactly-once语义的?

Flink通过checkpoint来保存数据是否处理完成的状态。

由JobManager协调各个TaskManager进行checkpoint存储,checkpoint保存在 StateBackend中,默认StateBackend是内存级的,也可以改为文件级的进行持久化保存。

执行过程实际上是一个两段式提交,每个算子执行完成,会进行“预提交”,直到执行完sink操作,会发起“确认提交”,如果执行失败,预提交会放弃掉。

如果宕机需要通过StateBackend进行恢复,只能恢复所有确认提交的操作。

在这里插入图片描述

1.3 Transform

1.3.1 map
val streamMap = stream.map{x=>x*2}
1.3.2 flatmap

flatMap的函数签名:def flatMap[A,B](as: List[A])(f: A ⇒ List[B]): List[B]

例如: flatMap(List(1,2,3))(i ⇒ List(i,i))

结果是List(1,1,2,2,3,3),

而List(“a b”, “c d”).flatMap(line ⇒ line.split(" "))

结果是List(a, b, c, d)。

val streamFlatMap = stream.flatMap{
    x => x.split(" ")
}
1.3.3 Fliter

在这里插入图片描述

val streamFilter = stream.filter{
    x => x == 1
}
1.3.4 keyBy

在这里插入图片描述

DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。

1.3.5 滚动聚合算子(Rolling Aggregation)

这些算子可以针对KeyedStream的每一个支流做聚合。

  • sum()

  • min()

  • max()

  • minBy()

  • maxBy()

1.3.6 Reduce

KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

val stream2 = env.readTextFile("YOUR_PATH\\sensor.txt")
  .map( data => {
    val dataArray = data.split(",")
    SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)
  })
  .keyBy("id")
  .reduce( (x, y) => SensorReading(x.id, x.timestamp + 1, y.temperature) )
1.3.7 Spilt 和 Select
  • Split

在这里插入图片描述

DataStream SplitStream:根据某些特征把一个DataStream拆分成两个或者多个DataStream。

  • Select

在这里插入图片描述

SplitStreamDataStream:从一个SplitStream中获取一个或者多个DataStream。

需求:传感器数据按照温度高低(以30度为界),拆分成两个流。

val splitStream = stream2
  .split( sensorData => {
    if (sensorData.temperature > 30) Seq("high") else Seq("low")
  } )

val high = splitStream.select("high")
val low = splitStream.select("low")
val all = splitStream.select("high", "low")
1.3.8 Connect 和 CoMap
  • connect

在这里插入图片描述

DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

  • CoMap和 CoFlatMap

在这里插入图片描述

ConnectedStreams → DataStream:作用于ConnectedStreams上,功能与map和flatMap一样,对ConnectedStreams中的每一个Stream分别进行map和flatMap处理。

val warning = high.map( sensorData => (sensorData.id, sensorData.temperature) )
val connected = warning.connect(low)

val coMap = connected.map(
    warningData => (warningData._1, warningData._2, "warning"),
    lowData => (lowData.id, "healthy")
)
1.3.9 Union

在这里插入图片描述

DataStream → DataStream:对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream。注意:如果你将一个DataStream跟它自己做union操作,在新的DataStream中,你将看到每一个元素都出现两次。

 //合并以后打印
val unionStream: DataStream[StartUpLog] = appStoreStream.union(otherStream)
unionStream.print("union:::")

ConnectUnion 区别:

  • Union之前两个流的类型必须是一样,Connect可以不一样,在之后的coMap中再去调整成为一样的。

  • Connect只能操作两个流,Union可以操作多个。

1.4 Sink

​ Flink没有类似于spark中foreach方法,让用户进行迭代的操作。虽有对外的输出操作都要利用Sink完成。最后通过类似如下方式完成整个任务最终输出操作。

stream.addSink(new MySink(xxxx))

​ 官方提供了一部分的框架的sink。除此以外,需要用户自定义实现sink。
在这里插入图片描述

1.4.1 kafka
  • pom.xml
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka-0.9_2.11</artifactId>
    <version>1.8.0</version>
</dependency>
val union = high.union(low).map(_.temperature.toString)

union.addSink(new FlinkKafkaProducer09[String]("localhost:9092", "test", new SimpleStringSchema()))
1.4.2 Redis
  • pom.xml
<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>flink-connector-redis_2.11</artifactId>
    <version>1.0</version>
</dependency>

定义一个redis的mapper类,用于定义保存到redis时调用的命令:

class MyRedisMapper extends RedisMapper[SensorReading]{
    
  override def getCommandDescription: RedisCommandDescription = {
    new RedisCommandDescription(RedisCommand.HSET, "sensor_temperature")
  }
    
  override def getValueFromData(t: SensorReading): String = t.temperature.toString

  override def getKeyFromData(t: SensorReading): String = t.id
}

在主函数中调用:

val conf = new FlinkJedisPoolConfig.Builder().setHost("localhost").setPort(6379).build()
dataStream.addSink( new RedisSink[SensorReading](conf, new MyRedisMapper) )
1.4.3 Elasticsearch
  • pom.xml
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch6_2.11</artifactId>
    <version>1.8.0</version>
</dependency>
val httpHosts = new util.ArrayList[HttpHost]()
httpHosts.add(new HttpHost("localhost", 9200))

val esSinkBuilder = new ElasticsearchSink.Builder[SensorReading]( httpHosts, new ElasticsearchSinkFunction[SensorReading] {
  override def process(t: SensorReading, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
    println("saving data: " + t)
    val json = new util.HashMap[String, String]()
    json.put("data", t.toString)
    val indexRequest = Requests.indexRequest().index("sensor").`type`("readingData").source(json)
    requestIndexer.add(indexRequest)
    println("saved successfully")
  }
} )
dataStream.addSink( esSinkBuilder.build() )
1.4.4 jdbc 自定义 Sink
  • pom.xml
<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.44</version>
</dependency>

<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.10</version>
</dependency>
  • 添加mysqlSink
class MyJdbcSink(sql:String ) extends  RichSinkFunction[Array[Any]] {

  val driver="com.mysql.jdbc.Driver"

  val url="jdbc:mysql://localhost:3306/sensor?useSSL=false"

  val username="root"

  val password="123456"

  val maxActive="20"

  var connection:Connection=null;

  //创建连接
  override def open(parameters: Configuration): Unit = {
    val properties = new Properties()
    properties.put("driverClassName",driver)
    properties.put("url",url)
    properties.put("username",username)
    properties.put("password",password)
    properties.put("maxActive",maxActive)


    val dataSource: DataSource = DruidDataSourceFactory.createDataSource(properties)
    connection = dataSource.getConnection()
  }

//反复调用连接,执行sql
  override def invoke(values: Array[Any]): Unit = {
// 预编译器
    val ps: PreparedStatement = connection.prepareStatement(sql )
    println(values.mkString(","))
    for (i <- 0 until values.length) {
// 坐标从1开始
      ps.setObject(i + 1, values(i))
    }
// 执行操作
    ps.executeUpdate()
  }

  override def close(): Unit = {
    if(connection!=null){
      connection.close()
    }
  }
}
  • 在main方法中增加,把明细保存到mysql中
val jdbcSink = new MyJdbcSink("insert into sensorReading values(?,?,?)")
dataDstream.map(data=>Array(data.id,data.timestamp,data.temperature)).addSink(jdbcSink)

二,Time和Window

2.1 Time

在Flink的流式处理中,会涉及到时间的不同概念,如下图所示:

在这里插入图片描述

Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。

Ingestion Time:是数据进入Flink的时间。

Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。

  • 一个例子——电影《星球大战》:

在这里插入图片描述

例如,一条日志进入Flink的时间为2017-11-12 10:00:00.123,到达Window的系统时间为2017-11-12 10:00:01.234,日志的内容如下:

2017-11-02 18:37:15.624 INFO Fail over to rm2

对于业务来说,要统计1min内的故障日志个数,哪个时间是最有意义的?—— eventTime,因为我们要根据日志的生成时间进行统计。

2.2 window

2.2.1 Window概述

​ streaming流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。

​ Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作。

2.2.2 Window类型

Window可以分成两类:

  • CountWindow : 按照指定的数据条数生成一个Window,与时间无关。

  • TimeWindow : 按照时间生成Window。

    对于TimeWindow,可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。

  1. 滚动窗口(Tumbling Windows)

    将数据依据固定的窗口长度对数据进行切片

    特点:时间对齐,窗口长度固定,没有重叠。

    滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。例如:如果你指定了一个5分钟大小的滚动窗口,窗口的创建如下图所示:

    在这里插入图片描述

适用场景:适合做BI统计等(做每个时间段的聚合计算)。

  1. 滑动窗口(Sliding Windows)

    滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。

    特点:时间对齐,窗口长度固定,有重叠。

    滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。

    例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,如下图所示:

在这里插入图片描述

​ 适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。

  1. 会话窗口(Session Windows)

    由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。

    特点:时间无对齐。

    session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。

在这里插入图片描述

2.3 Window Api

2.3.1 TimeWindow

​ TimeWindow是将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算。

  • 滚动窗口

    Flink默认的时间窗口根据Processing Time 进行窗口的划分,将Flink获取到的数据根据进入Flink的时间划分到不同的窗口中。

//15秒内地区最低最低温度
val minTempPerWindow = dataStream
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .timeWindow(Time.seconds(15))
  .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

时间间隔可以通过Time.milliseconds(x),Time.seconds(x),Time.minutes(x)等其中的一个来指定。

  • 滑动窗口

滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。

下面代码中的sliding_size设置为了5s,也就是说,窗口每5s就计算一次,每一次计算的window范围是15s内的所有元素。

val minTempPerWindow: DataStream[(String, Double)] = dataStream
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .timeWindow(Time.seconds(15), Time.seconds(5))
  .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

时间间隔可以通过Time.milliseconds(x),Time.seconds(x),Time.minutes(x)等其中的一个来指定。

2.3.2 CountWindow

CountWindow根据窗口中相同key元素的数量来触发执行,执行时只计算元素数量达到窗口大小的key对应的结果。

注意:CountWindow的window_size指的是相同Key的元素的个数,不是输入的所有元素的总数。

  • 滚动窗口

​ 默认的CountWindow是一个滚动窗口,只需要指定窗口大小即可,当元素数量达到窗口大小时,就会触发窗口的执行。

val minTempPerWindow: DataStream[(String, Double)] = dataStream
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .countWindow(5)
  .reduce((r1, r2) => (r1._1, r1._2.max(r2._2)))
  • 滑动窗口

    滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。

    下面代码中的sliding_size设置为了2,也就是说,每收到两个相同key的数据就计算一次,每一次计算的window范围是5个元素。

val keyedStream: KeyedStream[(String, Int), Tuple] = startUplogDstream.map(startuplog=>(startuplog.ch,1)).keyBy(0)
//每当某一个key的个数达到2的时候,触发计算,计算最近该key最近10个元素的内容
val windowedStream: WindowedStream[(String, Int), Tuple, GlobalWindow] = keyedStream.countWindow(10,2)
val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

三,EventTime 和 Window

3.1 EventTime的引入

在Flink的流式处理中,绝大部分的业务都会使用eventTime,一般只在eventTime无法使用时,才会被迫使用ProcessingTime或者IngestionTime。

如果要使用EventTimeEventTime,那么需要引入EventTime的时间属性,引入方式如下所示:

val env = StreamExecutionEnvironment.getExecutionEnvironment

// 从调用时刻开始给env创建的每一个stream追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

3.2 Watermark

3.2.1 基本概念
我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、分布式等原因,导致乱序的产生,所谓乱序,就是**指Flink接收到的事件的先后顺序不是严格按照事件的Event Time顺序排列的**。 

在这里插入图片描述

​ 那么此时出现一个问题,一旦出现乱序,如果只根据eventTime决定window的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了,这个特别的机制,就是Watermark。

  • Watermark是一种衡量Event Time进展的机制,它是数据本身的一个隐藏属性,数据本身携带着对应的Watermark。
  • Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window来实现。
  • 数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark触发的。
  • Watermark可以理解成一个延迟触发机制,我们可以设置Watermark的延时时长t,每次系统会校验已经到达的数据中最大的maxEventTime,然后认定 eventTime小于maxEventTime - t 的所有数据都已经到达如果有窗口的停止时间等于maxEventTime – t,那么这个窗口被触发执行

​ 有序流的Watermarker如下图所示:(Watermark设置为0)
在这里插入图片描述

​ 乱序流的Watermarker如下图所示:(Watermark设置为2)

在这里插入图片描述

​ 当Flink接收到每一条数据时,都会产生一条Watermark,这条Watermark就等于当前所有到达数据中的maxEventTime - 延迟时长,也就是说,Watermark是由数据携带的,一旦数据携带的Watermark比当前未触发的窗口的停止时间要晚,那么就会触发相应窗口的执行。由于Watermark是由数据携带的,因此,如果运行过程中无法获取新的数据,那么没有被触发的窗口将永远都不被触发。

​ 上图中,我们设置的允许最大延迟到达时间为2s,所以时间戳为7s的事件对应的Watermark是5s,时间戳为12s的事件的Watermark是10s,如果我们的窗口1是1s5s,窗口2是6s10s,那么时间戳为7s的事件到达时的Watermarker恰好触发窗口1,时间戳为12s的事件到达时的Watermark恰好触发窗口2。

Watermark 就是触发前一窗口的“关窗时间”,一旦触发关门那么以当前时刻为准在窗口范围内的所有所有数据都会收入窗中。

​ 只要没有达到水位那么不管现实中的时间推进了多久都不会触发关窗。

3.2.2 Watermark的引入
//watermark 延迟设置为 1000ms 
    kafkaStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[String](TimeUnit.MILLISECONDS(1000)) {
      override def extractTimestamp(element: String): Long = {
        Integer.parseInt(element)*1000
      }
    })

3.3 EventTimeWindow API

3.3.1 滚动窗口(TumblingEventTimeWindows)
package eventwindow

import org.apache.flink.api.java.tuple.Tuple
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.aggregation.AggregationFunction.AggregationType
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import scala.collection.mutable


object TumblingEventTimeWindowsDemo {

  def main(args: Array[String]): Unit = {

    val env = StreamExecutionEnvironment.getExecutionEnvironment

    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

    env.setParallelism(1)

    val dstream: DataStream[String] = env.socketTextStream("113.31.112.55",7777)

    val dataStream: DataStream[(String, Long, Int)] = dstream.map(data => {
      val arr: Array[String] = data.split(" ")
      (arr(0),arr(1).toLong,1)
    })
	
      //设置watermark延迟为1秒 
    val  dataWithEventTimeDstream: DataStream[(String, Long, Int)] = dataStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)]
    (Time.milliseconds(1000)) {
      override def extractTimestamp(element: (String, Long, Int)): Long = {
          element._2
      }
    })

    val keyedStream: KeyedStream[(String, Long, Int), Tuple] =  dataWithEventTimeDstream.keyBy(0)

    val timeWindow: WindowedStream[(String, Long, Int), Tuple, TimeWindow] =
                    keyedStream.window(TumblingEventTimeWindows.of(Time.seconds(2)))

    val groupStream: DataStream[mutable.HashSet[Long]] =  timeWindow.fold(new mutable.HashSet[Long]()) { case (set, (key, ts, count)) =>
      set += ts
    }
    groupStream.print("window::::").setParallelism(1)

    env.execute()

  }
}
  • 结果是按照Event Time的时间窗口计算得出的,而无关系统的时间(包括输入的快慢)。
3.3.2 滑动窗口(SlidingEventTimeWindows)
package eventwindow

import org.apache.flink.api.java.tuple.Tuple
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows
import org.apache.flink.streaming.api.windowing.windows.TimeWindow

import scala.collection.mutable

object SlidingEventTimeWindowsDemo {

 def main(args: Array[String]): Unit = {

   val env  = StreamExecutionEnvironment.getExecutionEnvironment

   env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

   env.setParallelism(1)

   val dstream: DataStream[String] =  env.socketTextStream("113.31.112.55",7777)

   val dataStream: DataStream[(String, Long, Int)] = dstream.map(data => {
     val arr: Array[String] = data.split(" ")
     (arr(0),arr(1).toLong,1)
   })

   val dataWithEventTimeStream: DataStream[(String, Long, Int)] =  dataStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)]
   (Time.milliseconds(1000)) {
     override def extractTimestamp(element: (String, Long, Int)): Long = {
       element._2      }
   })

   val keyedStream: KeyedStream[(String, Long, Int), Tuple] = dataWithEventTimeStream.keyBy(0)

   keyedStream.print("keyed:::;")

   val windowStream: WindowedStream[(String, Long, Int), Tuple, TimeWindow] =
         keyedStream.window(SlidingEventTimeWindows.of(Time.seconds(2),Time.milliseconds(500)))

   val groupDstream: DataStream[mutable.HashSet[Long]] = windowStream.fold(new mutable.HashSet[Long]()) { case (set, (key, ts, count)) =>
     set += ts
   }

   groupDstream.print("window::::").setParallelism(1)

   env.execute()
 }

}
3.3.3 会话窗口(EventTimeSessionWindows)

​ 相邻两次数据的EventTime的时间差超过指定的时间间隔就会触发执行。如果加入Watermark, 会在符合窗口触发的情况下进行延迟。到达延迟水位再进行窗口触发。

def main(args: Array[String]): Unit = {
  //  环境
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
  env.setParallelism(1)

  val dstream: DataStream[String] = env.socketTextStream("localhost",7777)



  val textWithTsDstream: DataStream[(String, Long, Int)] = dstream.map { text =>
    val arr: Array[String] = text.split(" ")
    (arr(0), arr(1).toLong, 1)
  }
  val textWithEventTimeDstream: DataStream[(String, Long, Int)] = textWithTsDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.milliseconds(1000)) {
    override def extractTimestamp(element: (String, Long, Int)): Long = {

     return  element._2
    }
  })

  val textKeyStream: KeyedStream[(String, Long, Int), Tuple] = textWithEventTimeDstream.keyBy(0)
  textKeyStream.print("textkey:")

  val windowStream: WindowedStream[(String, Long, Int), Tuple, TimeWindow] = textKeyStream.window(EventTimeSessionWindows.withGap(Time.milliseconds(500)) )



  windowStream.reduce((text1,text2)=>
    (  text1._1,0L,text1._3+text2._3)
  )  .map(_._3).print("windows:::").setParallelism(1)

  env.execute()

}

四,Table Api 和 SQL

​ Table API是流处理和批处理通用的关系型API,Table API可以基于流输入或者批输入来运行而不需要进行任何修改。Table API是SQL语言的超集并专门为Apache Flink设计的,Table API是Scala 和Java语言集成式的API。与常规SQL语言中将查询指定为字符串不同,Table API查询是以Java或Scala中的语言嵌入样式来定义的,具有IDE支持如:自动完成和语法检测。

4.1 pom.xml

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table_2.11</artifactId>
    <version>1.7.0</version>
</dependency>

4.2 构造表环境

def main(args: Array[String]): Unit = {
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("GMALL_STARTUP")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }

  val startupLogTable: Table = tableEnv.fromDataStream(startupLogDstream)

   val table: Table = startupLogTable.select("mid,ch").filter("ch ='appstore'")

  val midchDataStream: DataStream[(String, String)] = table.toAppendStream[(String,String)]

  midchDataStream.print()
  env.execute()
}
4.2.1 动态表

如果流中的数据类型是case class可以直接根据case class的结构生成table

tableEnv.fromDataStream(startupLogDstream)  

或者根据字段顺序单独命名

tableEnv.fromDataStream(startupLogDstream,’mid,’uid  .......)  

最后的动态表可以转换为流进行输出

table.toAppendStream[(String,String)]
4.2.2 字段

用一个单引放到字段前面 来标识字段名, 如 ‘name , ‘mid ,’amount 等

4.3 TableAPI

//每10秒中渠道为appstore的个数
def main(args: Array[String]): Unit = {
  //sparkcontext
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  //时间特性改为eventTime
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("GMALL_STARTUP")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  //告知watermark 和 eventTime如何提取
  val startupLogWithEventTimeDStream: DataStream[StartupLog] = startupLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[StartupLog](Time.seconds(0L)) {
    override def extractTimestamp(element: StartupLog): Long = {
      element.ts
    }
  }).setParallelism(1)

  //SparkSession
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  //把数据流转化成Table
  val startupTable: Table = tableEnv.fromDataStream(startupLogWithEventTimeDStream , 'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ts.rowtime)

  //通过table api 进行操作
  // 每10秒 统计一次各个渠道的个数 table api 解决
  //1 groupby  2 要用 window   3 用eventtime来确定开窗时间
  val resultTable: Table = startupTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
 
 

  //把Table转化成数据流
  //val appstoreDStream: DataStream[(String, String, Long)] = appstoreTable.toAppendStream[(String,String,Long)]
  val resultDstream: DataStream[(Boolean, (String, Long))] = resultSQLTable.toRetractStream[(String,Long)]

  resultDstream.filter(_._1).print()

  env.execute()

}
4.3.1 关于group by
  • 如果使用 groupby table转换为流的时候只能用toRetractDstream
  val rDstream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]
  • toRetractDstream 得到的第一个boolean型字段标识 true就是最新的数据,false表示过期老数据
val rDstream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]
  rDstream.filter(_._1).print()
  • 如果使用的api包括时间窗口,那么时间的字段必须,包含在group by中。
val table: Table = startupLogTable.filter("ch ='appstore'").window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch ,'tt).select("ch,ch.count ")
4.3.2 关于时间窗口
  • 用到时间窗口,必须提前声明时间字段,如果是processTime直接在创建动态表时进行追加就可以。

    val startupLogTable: Table = tableEnv.fromDataStream(startupLogWithEtDstream,'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ts.rowtime)
    
  • 如果是EventTime要在创建动态表时声明

  • 滚动窗口可以使用Tumble over 10000.millis on

4.4 SQL编写

def main(args: Array[String]): Unit = {
  //sparkcontext
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  //时间特性改为eventTime
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("GMALL_STARTUP")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  //告知watermark 和 eventTime如何提取
  val startupLogWithEventTimeDStream: DataStream[StartupLog] = startupLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[StartupLog](Time.seconds(0L)) {
    override def extractTimestamp(element: StartupLog): Long = {
      element.ts
    }
  }).setParallelism(1)

  //SparkSession
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  //把数据流转化成Table
  val startupTable: Table = tableEnv.fromDataStream(startupLogWithEventTimeDStream , 'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ts.rowtime)

  //通过table api 进行操作
  // 每10秒 统计一次各个渠道的个数 table api 解决
  //1 groupby  2 要用 window   3 用eventtime来确定开窗时间
  val resultTable: Table = startupTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
 // 通过sql 进行操作

  val resultSQLTable : Table = tableEnv.sqlQuery( "select ch ,count(ch)   from "+startupTable+"  group by ch   ,Tumble(ts,interval '10' SECOND )")

  //把Table转化成数据流
  //val appstoreDStream: DataStream[(String, String, Long)] = appstoreTable.toAppendStream[(String,String,Long)]
  val resultDstream: DataStream[(Boolean, (String, Long))] = resultSQLTable.toRetractStream[(String,Long)]

  resultDstream.filter(_._1).print()

  env.execute()

}

五,Flink CEP简介

5.1 什么是复杂事件CEP

一个或多个由简单事件构成的事件流通过一定的规则匹配,然后输出用户想得到的数据,满足规则的复杂事件。

特征:

  • 目标:从有序的简单事件流中发现一些高级特征
  • 输入:一个或多个由简单事件构成的事件流
  • 处理:识别简单事件之间的内在联系,多个符合一定规则的简单事件构成复杂事件、
  • 输出:满足规则的复杂事件

在这里插入图片描述

CEP用于分析低延迟、频繁产生的不同来源的事件流。CEP可以帮助在复杂的、不相关的事件流中找出有意义的模式和复杂的关系,以接近实时或准实时的获得通知并阻止一些行为。

CEP支持在流上进行模式匹配,根据模式的条件不同,分为连续的条件或不连续的条件;模式的条件允许有时间的限制,当在条件范围内没有达到满足的条件时,会导致模式匹配超时。

看起来很简单,但是它有很多不同的功能:

  • 输入的流数据,尽快产生结果

  • 在2个event流上,基于时间进行聚合类的计算

  • 提供实时/准实时的警告和通知

  • 在多样的数据源中产生关联并分析模式

  • 高吞吐、低延迟的处理

市场上有多种CEP的解决方案,例如Spark、Samza、Beam等,但他们都没有提供专门的library支持。但是Flink提供了专门的CEP library。

5.2 FLink CEP

Flink为CEP提供了专门的Flink CEP library,它包含如下组件:

  • Event Stream

  • pattern定义

  • pattern检测

  • 生成Alert
    在这里插入图片描述

首先,开发人员要在DataStream流上定义出模式条件,之后Flink CEP引擎进行模式检测,必要时生成告警。

为了使用Flink CEP,我们需要导入依赖:

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-cep_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
</dependency>
5.2.1 EventStreams(登录事件流)
case class LoginEvent(userId: String, ip: String, eventType: String, eventTime: String)

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
env.setParallelism(1)

val loginEventStream = env.fromCollection(List(
  LoginEvent("1", "192.168.0.1", "fail", "1558430842"),
  LoginEvent("1", "192.168.0.2", "fail", "1558430843"),
  LoginEvent("1", "192.168.0.3", "fail", "1558430844"),
  LoginEvent("2", "192.168.10.10", "success", "1558430845")
)).assignAscendingTimestamps(_.eventTime.toLong)
5.2.2 Pattern API
  • 每个Pattern都应该包含几个步骤,或者叫做state。从一个state到另一个state,通常我们需要定义一些条件,例如下列的代码:
val loginFailPattern = Pattern.begin[LoginEvent]("begin")
  .where(_.eventType.equals("fail"))
  .next("next")
  .where(_.eventType.equals("fail"))
  .within(Time.seconds(10)

每个state都应该有一个标示:例如.begin [LoginEvent] (“begin”)中的"begin"

每个state都需要有一个唯一的名字,而且需要一个filter来过滤条件,这个过滤条件定义事件需要符合的条件,例如:

.where(_.eventType.equals(“fail”))

我们也可以通过subtype来限制event的子类型:

start.subtype(SubEvent.class).where(...);

事实上,你可以多次调用subtype和where方法;而且如果where条件是不相关的,你可以通过or来指定一个单独的filter函数:

之后,我们可以在此条件基础上,通过next或者followedBy方法切换到下一个state,next的意思是说上一步符合条件的元素之后紧挨着的元素;而followedBy并不要求一定是挨着的元素。这两者分别称为严格近邻和非严格近邻。

val strictNext = start.next(“middle”)
val nonStrictNext = start.followedBy(“middle”)

最后,我们可以将所有的Pattern的条件限定在一定的时间范围内:

next.within(Time.seconds(10))

这个时间可以是Processing Time,也可以是Event Time。

5.2.3 Pattern 检测

​ 通过一个input DataStream以及刚刚我们定义的Pattern,我们可以创建一个PatternStream:

al input = ...
val pattern = ...

val patternStream = CEP.pattern(input, pattern)
val patternStream = CEP.pattern(loginEventStream.keyBy(_.userId), loginFailPattern)

​ 一旦获得PatternStream,我们就可以通过select或flatSelect,从一个Map序列找到我们需要的告警信息。

5.2.4 Select

​ select方法需要实现一个PatternSelectFunction,通过select方法来输出需要的警告。它接受一个Map对,包含string/event,其中key为state的名字,event则为真是的Event。

val loginFailDataStream = patternStream
  .select((pattern: Map[String, Iterable[LoginEvent]]) => {
    val first = pattern.getOrElse("begin", null).iterator.next()
    val second = pattern.getOrElse("next", null).iterator.next()

    (second.userId, second.ip, second.eventType)
  })
  • 其返回值仅为1条记录。
5.2.5 flatSelect

通过实现PatternFlatSelectFunction,实现与select相似的功能。唯一的区别就是flatSelect方法可以返回多条记录。

换到下一个state,next的意思是说上一步符合条件的元素之后紧挨着的元素;而followedBy并不要求一定是挨着的元素。这两者分别称为严格近邻和非严格近邻。

val strictNext = start.next(“middle”)
val nonStrictNext = start.followedBy(“middle”)

最后,我们可以将所有的Pattern的条件限定在一定的时间范围内:

next.within(Time.seconds(10))

这个时间可以是Processing Time,也可以是Event Time。

5.2.3 Pattern 检测

​ 通过一个input DataStream以及刚刚我们定义的Pattern,我们可以创建一个PatternStream:

al input = ...
val pattern = ...

val patternStream = CEP.pattern(input, pattern)
val patternStream = CEP.pattern(loginEventStream.keyBy(_.userId), loginFailPattern)

​ 一旦获得PatternStream,我们就可以通过select或flatSelect,从一个Map序列找到我们需要的告警信息。

5.2.4 Select

​ select方法需要实现一个PatternSelectFunction,通过select方法来输出需要的警告。它接受一个Map对,包含string/event,其中key为state的名字,event则为真是的Event。

val loginFailDataStream = patternStream
  .select((pattern: Map[String, Iterable[LoginEvent]]) => {
    val first = pattern.getOrElse("begin", null).iterator.next()
    val second = pattern.getOrElse("next", null).iterator.next()

    (second.userId, second.ip, second.eventType)
  })
  • 其返回值仅为1条记录。
5.2.5 flatSelect

通过实现PatternFlatSelectFunction,实现与select相似的功能。唯一的区别就是flatSelect方法可以返回多条记录。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Flink的安装目录下,主要有以下几个配置文件: 1. flink-conf.yaml:该文件是Flink的主要配置文件,用于设置Flink的全局配置。 2. 日志的配置文件:用于配置Flink的日志打印格式、级别等相关参数。 3. zk配置:用于配置Flink与ZooKeeper的连接信息,以便Flink可以使用ZooKeeper来实现高可用和容错机制。 4. Flink SQL Client配置:用于配置Flink SQL客户端的相关参数,如连接信息、默认目录等。 除了以上配置文件,根据table程序的需要,还可以通过配置一些必要的参数来优化表操作。举个例子,对于无界流程序,可能需要确定必要的状态大小上限。 在Java代码中,可以使用TableEnvironment的getConfig()方法获取Flink的配置对象,然后通过配置对象的setString()方法来设置底层的键值对配置。例如,可以通过以下方式设置mini-batch优化相关的配置参数: ```java // 实例化table environment TableEnvironment tEnv = ...; // 访问flink配置 Configuration configuration = tEnv.getConfig().getConfiguration(); // 设置底层key-value配置 configuration.setString("table.exec.mini-batch.enabled", "true"); // 开启mini-batch优化 configuration.setString("table.exec.mini-batch.allow-latency", "5 s"); // 缓存输入数据5秒 configuration.setString("table.exec.mini-batch.size", "5000"); // 每个聚合操作任务可以缓存的最大数据条数为5000条 ``` 通过以上配置,可以启用mini-batch优化,并设置相应的缓存参数,以提高表操作的性能和效率。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Flink 从 0 到 1 学习 —— Flink 配置文件详解](https://blog.csdn.net/tzs_1041218129/article/details/101104375)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [flink-sql查询配置与性能优化参数详解-1.14](https://blog.csdn.net/u012443641/article/details/127900815)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值