光纤LP模式分解
10个模式合成后的理想分布图和重建分布图以及残差图
df = pd.DataFrame()
# 设置谱图
cm=plt.cm.get_cmap('Spectral_r')
# 创建画布
fig = plt.figure(figsize=(27, 9))
# 设置样例个数
case_nums = 9
# 设置行文字解释
group_name = ["Measurement", "Reconstructed", "Residual"]
for i in range(case_nums):
output = outputs[i]
label = labels[i]
# 通过反复相位组合找出合适的输出标签(只是相位正负重新组合)
# findTrueLabel函数表示根据预测标签(幅度系数和相位系数)和测量光强分布,
# 找出正确的相位组合(幅度不变)使得重建的和测量的分布最大相似
output = findTrueLabel(label, output)