前面在Spark多维分析去重计数场景优化案例中说了一下Spark计算在多维分析场景中的弊端,多维度分析会导致数据量指数级膨胀,搭配上去重计算字段越多,膨胀倍数也是线性增长,通过BitMap这个案例也更加让我们明白了,什么是数据倾斜,从根本来讲,并不仅仅是数据量的问题,而是倾斜Task在进行数据IO和数据计算的时候耗费过长时间,我理解为下面三种情况。
- 数据量过大 很常见
- 单条数据存储过大 很少有单个字段单条数据超过几百兆或者几个G的
- 单个Task计算逻辑非常复杂
上面三种情况任意一个情况较差,那么都有可能造成Task长尾。那在之前的案例中也见到了,我使用了RoaringBitMap导致最终的数据计算长尾,单个跑出来的数据可达几个G。
RoaringBitMap
原理分析
借用一张图片看看它比较直观的存储方式。以下都以32位存储为例。64位可以自己去找资料看看。
简单来说,每次往里面加入一个数据,就会将32位数据分为高16位和低16位,高16位是大桶,低16位是小桶,那一个小桶最多可以存储2^16=65536条数据。


其中RoaringBitMap有一个比较聪明的点,就是一个小桶数据小于4096条时,是采用SmallSet的方式存储,理解为一个排序数组就行,超过这个阈值就采用位图。具体参考这篇文章解释
这个图片也能让你明白大于4096后,位图内存利用率更好,另外就是我们一旦使用了位图,就是2^16位=8kb,所以对于小数据量,没必要一上来就分配这么多存储空间,一条数据低16位,就是2个字节,4096条刚好到8kb,后面如果继续使用数组,就会超过8kb,还不如直接使用位图来存储了,只需要8kb。

存储分析
上面说了RoaringBitMap分为高位存储和低位存储,高位桶对应65536个低位桶,每个低位桶最多8kb,这样一个RoaringBitMap最多有655368kb=512M。经过上面原理的分析,RoaringBitMap很容易理解为一个位图的压缩算法,想象一下,假如直接用Bitmap存储最大值和最小值,相当于需要2^32位,只有最高位和最低位为1,中间就全空了,而且还要分配512M存储,如果采用RoaringBitmap,就只有最高低位桶和最低低位桶,且都采用排序数组存储,也就2byte+2byte=4byte,算上高位也就几个字节。明显压缩了很多存储。
但是,像这种压缩算法,永远也避免不了它的局限性,这个RoaringBitMap存储大小主要受两个东西影响
* 统计基数的量
* 当前数据的散列程度
第一点毋庸置疑,基数越大浪费存储空间越多,但不是绝对,宏观上是这样的,只有当一个桶大于4096之后,那么往里面加元素,空间都不会浪费。
第二点,还是这个图片,可以假设有2000w的基数,那么假设是顺序的,那么2000w/65536桶8kb=306桶8kb=2.448M。但是如果每个桶恰好只存4096条数据,那么就是2000w/4096桶8kb=38M,所以数据越离散,对压缩算法的影响越大,压缩效果也就没那么好。
而第二点也就非常贴合我们实际应用场景,比如上一次场景的多维分析uv去重,userid本身是一个不固定,加上维度分析,userid更是自由组合,所以生成的二进制对象非常大,即便userid比较少。

上面讨论了那么多RoaringBitMap存储空间问题,在实际场景中,userid分布是很不均匀的,很随机,那么在实际中每个维度场景下生成的RoaringBitMap对象非常大,尤其是最粗粒度,聚集了最多散列用户,细粒度只聚集了少部分,开销很小。
Spark和Hive计算时,多维度组合必定有一个读取数据量会倾斜,因为他要聚合所有维度组合情况,实际And和or操作非常快,主要时间花在了IO上。
RoringBitMap在ClickHouse和Spark之间作用
上面从RoringBitMap原理和存储方面分析了我们之前案例中数据倾斜的问题,但是有一个待讨论的点,就是我们分析了11个维度组合,经过验证可能有几百万的维度组合情况,而其中某些维度组合是不是我们真正分析需要的。比如是否要看某个用户等级,os的情况,很少有人这么分析,相当于我们的多维分析,是预计算好所有可能组成的情况,沉淀到数仓的ADS层。然后提供接口查询,对数仓来说,只要按时产出就行,而实际数据需求方只是挑选其中某些情况进行分析,不可能枚举这么多种。
针对这种数据仓库预计算多维分析场景,我们花费了几个小时跑出来预计算的结果,只有少部分数据是有价值的,很显然要解决这种问题,要从两个方面入手
- 只求数据业务方需要的数据,很难预判业务方的需求,毕竟阴晴不定。
- 一是最大限度缩小无关联维度的组合 还没想到解决办法,记个代办
- 按需自助取数
这里我们针对第三点,前面已经把数据聚合到了DWS,也就是最细粒度的维度+RoaringBitMap< userid >,那我们不提供ADS,业务方需要的话,自己根据DWS查就行。
| 维度 | RBM |
|---|---|
| 维度2 | RBM< user > |
| 维度3 | RBM< user > |
| … | … |
由于Hive表不能直接存储对象,只能存储二进制,那业务方查询遇到了一个问题,就是必须使用我们的反序列化UDF,先将表数据转成RBM对象,然后在聚合维度做OR操作,也就是userid去重,这个耗时就会更长。
于是我们想到了ClickHouse的groupBitMapOR,底层也是采用RoaringBitMap,但是是用Croaring实现的,那可以将hive的RBM对象序列化成ClickHouse的RoaringBitMap数据存储方式。
下面案例以64位实现方式为准,32位可自己扒代码。
Spark RoaringBitMapUDAF聚合函数实现
/**
* @description roaring64NavigableMap 采用红黑树的RBM实现方法
*/
public class RoaringBitMapNavigableUDAF extends AbstractGenericUDAFResolver implements Serializable {
/**
* @return 返回去重Buffer
* @description UDAF初始化 仅仅支持一个参数 传进来的为TextWritable 读取Object可以强制转为Text
* */
@Override
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {
// TODO Auto-generated method stub
if (parameters == null || parameters.length != 1) {
throw new UDFArgumentTypeException(0, "仅支持一个参数!");
}
return new RoaringBitMapNavigableUDAF.BitmapDistinctUDAFBuffer();
}
/**
* BitMap去重 静态内部类
* 作为 COMPLETE(PARTIAL1) -> PARTIAL2 -> FINAL 几个过程的处理
* */
public static class BitmapDistinctUDAFBuffer extends GenericUDAFEvaluator {
// 输入类型
PrimitiveObjectInspector inputType;
/**
* @return 约定每个过程的输出类型。即告诉下个过程我将传入Byte[]数组过来
* @description 初始化函数 如果为COMPLETE(PARTIAL1)过程 约定原始输入类型类PrimitiveObjectInspector(Text),用户传入字符串即可 其余模式下为Byte[]
* */
@Override
public ObjectInspector init(GenericUDAFEvaluator.Mode m, ObjectInspector[] parameters)
throws HiveException {
super.init(m, parameters);
if(Mode.PARTIAL1.equals(m) || Mode.COMPLETE.equals(m)){
inputType = (PrimitiveObjectInspector) parameters[0];
}
return PrimitiveObjectInspectorFactory.javaByteArrayObjectInspector;
}
/**
* @description 聚合的Buffer类
* */
@Override
public GenericUDAFEvaluator.AggregationBuffer getNewAggregationBuffer() throws HiveException {
return new RoaringBitMapNavigableUDAF.BitmapAggrBuffer();
}
/**
* @description 重置清空buffer
* */
@Override
public void reset(GenericUDAFEvaluator.AggregationBuffer aggregationBuffer) throws HiveException {
((RoaringBitMapNavigableUDAF.BitmapAggrBuffer) aggregationBuffer).reset();
}
/**
* @param aggregationBuffer 聚合去重Buffer处理器
* @param objects 对象列表
* @description 由聚合Buffer处理器处理每一个object
* */
@Override
public void iterate(GenericUDAFEvaluator.AggregationBuffer aggregationBuffer, Object[] objects) throws HiveException {
if(objects == null) {
return;
}
for(Object object: objects){
if(object != null) {
Object input = inputType.getPrimitiveWritableObject(object);
RoaringBitMapNavigableUDAF.BitmapAggrBuffer bitmapAggrBufferr = (RoaringBitMapNavigableUDAF.BitmapAggrBuffer) aggregationBuffer;
bitmapAggrBufferr.calcResult((Text) input); // 这里强制转为了Text。注意BitMap只能处理数字,所以传进来的必须是数字 字符串 否则会报错
}
}
}
/**
* @param aggregationBuffer 聚合去重Buffer处理器
* @description 将Buffer中的RoaringBitmap序列化成字节数组,输出给下游shuffle。
* */
@Override
public Object terminatePartial(GenericUDAFEvaluator.AggregationBuffer aggregationBuffer) throws HiveException {
RoaringBitMapNavigableUDAF.BitmapAggrBuffer bitmapAggrBuffer = (RoaringBitMapNavigableUDAF.BitmapAggrBuffer) aggregationBuffer;
// 约定字节输出流
ByteArrayOutputStream out = new ByteArrayOutputStream();
ObjectOutputStream objectOutputStream = null;
try {
objectOutputStream = new ObjectOutputStream(out);
bitmapAggrBuffer.writeBytes(objectOutputStream);
objectOutputStream.flush(); // 记得要flush一下
return out.toByteArray();
} catch (IOException e) {
e.printStackTrace();
} finally {
// 关闭流
try {
out.close();
if (objectOutputStream != null) {
objectOutputStream.close(); // 关闭外部流即可 内部流会自己关闭
}
} catch (IOException e) {
e.printStackTrace();
}
}
return new byte[0];
}
/**
* @param aggregationBuffer 聚合去重Buffer处理器
* @param o 另一个需要待合并的 聚合去重Buffer处理器
* @description 这里在下游聚合的时候,不同上游传了同一个Group key但是不同value,
* 此时value已经是序列化之后的RoaringBitMap对象object,需要将每一个object反序列化成RoaringBitMap
* 然后利用aggregationBuffer 将每个RoaringBitMap合并起来
* 这里的合并采用OR操作,因为涉及到同一个key的value去重,只需要任何一个value的某个bit有值,那么就说明这个bit代表的值是有的,即把bit当做标记而已。
* */

本文探讨了Spark多维分析中的数据倾斜问题,通过RoaringBitMap进行优化,并介绍了如何将RBM序列化应用于ClickHouse,显著提升查询速度。重点在于解决数据存储过大和计算逻辑复杂带来的任务长尾问题,以及如何在预计算场景中针对性地减少无用数据计算。
最低0.47元/天 解锁文章
287

被折叠的 条评论
为什么被折叠?



