-
树:n(n≥0)个结点的有限集。n=0时称为空树。在任意一棵非空树中:有且仅有一个特定的称为根的结点;当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每一个集合本身又是一棵树,并且称为根的子树。
-
相关概念
·度:结点拥有的子树数。
·层次:从根开始,根为第一层,根的孩子为第二层。
·深度:(结点)所在的层次数。根结点的深度为1。
·高度:所有结点中深度的最大值。(空树0)
·结点分类:叶结点(度数为0);内部结点;根结点。
·结点关系:祖先;后代;双亲;孩子;兄弟。
·森林:m(m ≥ 0)棵互不相交的树的集合。 -
二叉树:每个结点度数不超过2。
·有序二叉树:树中结点的各子树看成从左至右有次序,不能交换的二叉树。
·真二叉树:不含1度结点的二叉树。
·满二叉树:结点 n ,高度 h ,满足 n = 2^h - 1。(所有叶子都在同一层)
·斜树:结点都只有左子树或右子树。
·完全二叉树:具有n个结点的二又树按层序编号,如果编号为i(1 ≤ i ≤ n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同。
-
书的存储结构表示方法:双亲表示法、孩子表示法、孩子兄弟表示法。
·双亲表示法
数据域 | 指针域 |
---|---|
data | parent (firstchild / rightsib) |
·孩子表示法:需两种结点结构(孩子链表的孩子结点;表头数组的表头结点)