数据结构笔记(六)——二叉树

本文详细介绍了二叉树的概念,包括度、层次、深度等基本属性,以及二叉树的类型如完全二叉树、满二叉树。文章还探讨了二叉树的存储结构和遍历方式,包括前序、中序、后序和层序遍历,并讲解了树、森林与二叉树之间的转换方法。最后提到了哈夫曼树及其应用。
摘要由CSDN通过智能技术生成
  1. 树:n(n≥0)个结点的有限集。n=0时称为空树。在任意一棵非空树中:有且仅有一个特定的称为根的结点;当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每一个集合本身又是一棵树,并且称为根的子树。

  2. 相关概念
    ·度:结点拥有的子树数。
    ·层次:从根开始,根为第一层,根的孩子为第二层。
    ·深度:(结点)所在的层次数。根结点的深度为1。
    ·高度:所有结点中深度的最大值。(空树0)
    ·结点分类:叶结点(度数为0);内部结点;根结点。
    ·结点关系:祖先;后代;双亲;孩子;兄弟。
    ·森林:m(m ≥ 0)棵互不相交的树的集合。

  3. 二叉树:每个结点度数不超过2。
    ·有序二叉树:树中结点的各子树看成从左至右有次序,不能交换的二叉树。
    ·真二叉树:不含1度结点的二叉树。
    ·满二叉树:结点 n ,高度 h ,满足 n = 2^h - 1。(所有叶子都在同一层)
    在这里插入图片描述
    ·斜树:结点都只有左子树或右子树。
    ·完全二叉树:具有n个结点的二又树按层序编号,如果编号为i(1 ≤ i ≤ n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同。
    在这里插入图片描述

  4. 书的存储结构表示方法:双亲表示法、孩子表示法、孩子兄弟表示法。

·双亲表示法

数据域 指针域
data parent (firstchild / rightsib)

·孩子表示法:需两种结点结构(孩子链表的孩子结点;表头数组的表头结点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值