线性代数的本质(五)

8 抽象向量空间

为了直观地理解各种概念,通常用坐标对向量进行表示。但实际上很多核心概念是脱离于坐标系的,例如行列式、特征向量等,均与所选的坐标系无关。行列式代表一个变换对面积的缩放比例,而特征向量则是在变换过程中留在它所张成空间的向量
向量的本质其实更具有空间性,因此可以从更空间化的角度看待向量。

8.1 函数与向量

从某种意义上讲,函数也是一种向量。函数的加减和数乘与向量的加减和数乘相似。
在这里插入图片描述
向量的其他特性函数也满足,例如线性变换。线性变换的定义:
可加性: L ( v + w ) = L ( v ) + L ( w ) L\left( \boldsymbol{v}+\boldsymbol{w} \right) =L\left( \boldsymbol{v} \right) +L\left( \boldsymbol{w} \right) L(v+w)=L(v)+L(w)
成比例(一阶齐次): L ( c v ) = c L ( v ) L\left( c\boldsymbol{v} \right) =cL\left( \boldsymbol{v} \right) L(cv)=cL(v)
对于向量来说, L L L代表矩阵;对于函数来说, L L L代表函数。对于线性变换而言,从函数的角度理解就是线性变换输入一个函数,然后输出另一个函数。

8.2 求导矩阵

对于函数求导,有以下两个性质:
∂ [ f ± g ] = ∂ f ± ∂ g \partial \left[ f\pm g \right] =\partial f\pm \partial g [f±g]=f±g
∂ [ a ⋅ f ] = a ⋅ ∂ f \partial \left[ a\cdot f \right] =a\cdot \partial f [af]=af
与向量的线性变换相似,求导变换满足可加性成比例,所以它是线性的。

用矩阵来表示多项式函数的求导变换。首先给这个空间赋予坐标的含义,所以要选取基。由于多项式已经是幂函数求和的形式,可以选取 x x x的不同幂次为基, x x x的不同次幂就相当于基向量 i \boldsymbol{i} i j \boldsymbol{j} j k \boldsymbol{k} k x x x的不同幂次的系数就是对应基向量的坐标。
在这个坐标系中,求导是用一个无限矩阵来描述的。
在这里插入图片描述
在这里插入图片描述
可以通过这个方法构建一个矩阵,求每一个基函数的导数并把结果放在对应列,求导矩阵就是对每个基函数求导后作为列向量得到的。
在这里插入图片描述
最终得到求导矩阵:
d d x = [ 0 1 0 0 ⋯ 0 0 2 0 ⋯ 0 0 0 3 ⋯ 0 0 0 0 ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ] \frac{\mathrm{d}}{\mathrm{d}x}=\left[ \begin{matrix} 0& 1& 0& 0& \cdots\\ 0& 0& 2& 0& \cdots\\ 0& 0& 0& 3& \cdots\\ 0& 0& 0& 0& \cdots\\ \vdots& \vdots& \vdots& \vdots& \ddots\\ \end{matrix} \right] dxd= 0000100002000030

9 二次型

9.1 定义

如果一个多元二次函数的每一项的变量次数都为 2 2 2,则称这个二次函数是齐次的,即二次型
二次型中只能含有平方项某两个变量的交叉相乘项。如:
f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 + 3 x 3 2 + 4 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 f ( x 1 , x 2 , x 3 ) = 4 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 + 3 x 3 2 \begin{aligned} f\left( x_1,x_2,x_3 \right) &=x_{1}^{2}+2x_{2}^{2}+3x_{3}^{2}+4x_1x_2+2x_2x_3+2x_1x_3 \\ f\left( x_1,x_2,x_3 \right) &=4x_1x_2+2x_2x_3+2x_1x_3 \\ f\left( x_1,x_2,x_3 \right) &=x_{1}^{2}+2x_{2}^{2}+3x_{3}^{2} \end{aligned} f(x1,x2,x3)f(x1,x2,x3)f(x1,x2,x3)=x12+2x22+3x32+4x1x2+2x2x3+2x1x3=4x1x2+2x2x3+2x1x3=x12+2x22+3x32

9.2 二次型与矩阵的关系

以二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 + 3 x 3 2 + 4 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 f\left( x_1,x_2,x_3 \right) =x_{1}^{2}+2x_{2}^{2}+3x_{3}^{2}+4x_1x_2+2x_2x_3+2x_1x_3 f(x1,x2,x3)=x12+2x22+3x32+4x1x2+2x2x3+2x1x3为例,作如下变换:
f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 + 3 x 3 2 + 4 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3    = ( x 1 2 + 2 x 1 x 2 + x 1 x 3 ) + ( 2 x 2 2 + 2 x 1 x 2 + x 2 x 3 ) + ( 3 x 3 2 + x 2 x 3 + x 1 x 3 )    = x 1 ( x 1 + 2 x 2 + x 3 ) + x 2 ( 2 x 2 + 2 x 1 + x 3 ) + x 3 ( 3 x 3 + x 2 + x 1 )    = [ x 1 x 2 x 3 ] [ x 1 + 2 x 2 + x 3 2 x 1 + 2 x 2 + x 3 x 1 + x 2 + 3 x 3 ] = [ x 1 x 2 x 3 ] [ 1 2 1 2 2 1 1 1 3 ] [ x 1 x 2 x 3 ] = x T A x \begin{aligned} f\left( x_1,x_2,x_3 \right) &=x_{1}^{2}+2x_{2}^{2}+3x_{3}^{2}+4x_1x_2+2x_2x_3+2x_1x_3 \\ \ \ \\ &=\left( x_{1}^{2}+2x_1x_2+x_1x_3 \right) +\left( 2x_{2}^{2}+2x_1x_2+x_2x_3 \right) +\left( 3x_{3}^{2}+x_2x_3+x_1x_3 \right) \\ \ \ \\ &=x_1\left( x_1+2x_2+x_3 \right) +x_2\left( 2x_2+2x_1+x_3 \right) +x_3\left( 3x_3+x_2+x_1 \right) \\ \ \ \\ &=\left[ \begin{matrix} x_1& x_2& x_3\\ \end{matrix} \right] \left[ \begin{array}{c} x_1+2x_2+x_3\\ 2x_1+2x_2+x_3\\ x_1+x_2+3x_3\\ \end{array} \right] =\left[ \begin{matrix} x_1& x_2& x_3\\ \end{matrix} \right] \left[ \begin{matrix} 1& 2& 1\\ 2& 2& 1\\ 1& 1& 3\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ x_3\\ \end{array} \right] \\ &=\boldsymbol{x}^T\boldsymbol{Ax} \end{aligned} f(x1,x2,x3)      =x12+2x22+3x32+4x1x2+2x2x3+2x1x3=(x12+2x1x2+x1x3)+(2x22+2x1x2+x2x3)+(3x32+x2x3+x1x3)=x1(x1+2x2+x3)+x2(2x2+2x1+x3)+x3(3x3+x2+x1)=[x1x2x3] x1+2x2+x32x1+2x2+x3x1+x2+3x3 =[x1x2x3] 121221113 x1x2x3 =xTAx其中
x = [ x 1 x 2 x 3 ] T , A = [ 1 2 1 2 2 1 1 1 3 ] \boldsymbol{x}=\left[ \begin{matrix} x_1& x_2& x_3\\ \end{matrix} \right] ^T, \boldsymbol{A}=\left[ \begin{matrix} 1& 2& 1\\ 2& 2& 1\\ 1& 1& 3\\ \end{matrix} \right] x=[x1x2x3]TA= 121221113
则称 A \boldsymbol{A} A为二次型 f ( x 1 , x 2 , x 3 ) f\left( x_1,x_2,x_3 \right) f(x1,x2,x3)对应的矩阵。任何一个实二次型都对应一个实对称矩阵。
二次型对应的矩阵表示并不唯一:
f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 + 3 x 3 2 + 4 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 = [ x 1 x 2 x 3 ] [ 1 3 0 1 2 2 2 0 3 ] [ x 1 x 2 x 3 ] = [ x 1 x 2 x 3 ] [ 1 4 2 0 2 1 0 2 3 ] [ x 1 x 2 x 3 ] = [ x 1 x 2 x 3 ] [ 1 2 1 2 2 1 1 1 3 ] [ x 1 x 2 x 3 ] = ⋯ \begin{aligned} f\left( x_1,x_2,x_3 \right) &=x_{1}^{2}+2x_{2}^{2}+3x_{3}^{2}+4x_1x_2+2x_2x_3+2x_1x_3 \\ &=\left[ \begin{matrix} x_1& x_2& x_3\\ \end{matrix} \right] \left[ \begin{matrix} 1& 3& 0\\ 1& 2& 2\\ 2& 0& 3\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ x_3\\ \end{array} \right] =\left[ \begin{matrix} x_1& x_2& x_3\\ \end{matrix} \right] \left[ \begin{matrix} 1& 4& 2\\ 0& 2& 1\\ 0& 2& 3\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ x_3\\ \end{array} \right] \\ &=\left[ \begin{matrix} x_1& x_2& x_3\\ \end{matrix} \right] \left[ \begin{matrix} 1& 2& 1\\ 2& 2& 1\\ 1& 1& 3\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ x_3\\ \end{array} \right] =\cdots \\ \end{aligned} f(x1,x2,x3)=x12+2x22+3x32+4x1x2+2x2x3+2x1x3=[x1x2x3] 112320023 x1x2x3 =[x1x2x3] 100422213 x1x2x3 =[x1x2x3] 121221113 x1x2x3 =只有表示成实对称矩阵时,二次型的矩阵表示才是唯一的。
二次型的秩定义为对应实对称矩阵的秩。
不难发现,如果一个二次型只包含平方项,则其对应的二次型矩阵为对角阵

9.3 矩阵合同

假设二次型 f f f在不同基向量组下的坐标如下表所示:

二次型基向量组坐标
f = x T A x f=\boldsymbol{x}^T\boldsymbol{Ax} f=xTAx C = ( c 1 , c 2 , ⋯   , c n ) \boldsymbol{C}=\left( \boldsymbol{c}_1,\boldsymbol{c}_2,\cdots ,\boldsymbol{c}_n \right) C=(c1,c2,,cn) x \boldsymbol{x} x
f = y T B y f=\boldsymbol{y}^T\boldsymbol{By} f=yTBy D = ( d 1 , d 2 , ⋯   , d n ) \boldsymbol{D}=\left( \boldsymbol{d}_1,\boldsymbol{d}_2,\cdots ,\boldsymbol{d}_n \right) D=(d1,d2,,dn) y \boldsymbol{y} y

设基向量组 C \boldsymbol{C} C D \boldsymbol{D} D的基变换矩阵为 P \boldsymbol{P} P,且 P \boldsymbol{P} P可逆,则有 x = P y \boldsymbol{x}=\boldsymbol{Py} x=Py,于是
f = x T A x = ( P y ) T A ( P y ) = y T ( P T A P ) y = y T B y f=\boldsymbol{x}^T\boldsymbol{Ax}=\left( \boldsymbol{Py} \right) ^T\boldsymbol{A}\left( \boldsymbol{Py} \right) =\boldsymbol{y}^T\left( \boldsymbol{P}^T\boldsymbol{AP} \right) \boldsymbol{y}=\boldsymbol{y}^T\boldsymbol{By} f=xTAx=(Py)TA(Py)=yT(PTAP)y=yTBy其中
B = P T A P \boldsymbol{B}=\boldsymbol{P}^T\boldsymbol{AP} B=PTAP称上述变换为合同变换
不同基向量组下表示同一个二次型的实对称矩阵是一组合同矩阵,其中对应的合同变换矩阵是对应的基变换矩阵,它一定可逆。

9.4 化二次型为标准型与合同对角化

在合同变换中,选择合适的矩阵 P \boldsymbol{P} P,可使 A \boldsymbol{A} A经过合同变换后变为对角阵 U \boldsymbol{U} U,这样就可以使某个具有一般形态的二次型化为只包含平方项的特殊二次型:
U = P T A P \boldsymbol{U}=\boldsymbol{P}^T\boldsymbol{AP} U=PTAP该过程成为合同对角化。只包含平方项的特殊二次型被称为标准型
如二次型:
f ( x 1 , x 2 ) = x 1 2 + 3 x 2 2 + 2 x 1 x 2 = [ x 1 x 2 ] [ 1 1 1 3 ] [ x 1 x 2 ] = x T A x    = ( x 1 2 + 2 x 1 x 2 + x 2 2 ) + 2 x 2 2 = ( x 1 + x 2 ) 2 + 2 x 2 2 f\left( x_1,x_2 \right) =x_{1}^{2}+3x_{2}^{2}+2x_1x_2=\left[ \begin{matrix} x_1& x_2\\ \end{matrix} \right] \left[ \begin{matrix} 1& 1\\ 1& 3\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] =\boldsymbol{x}^T\boldsymbol{Ax} \\ \ \ \\ =\left( x_{1}^{2}+2x_1x_2+x_{2}^{2} \right) +2x_{2}^{2}=\left( x_1+x_2 \right) ^2+2x_{2}^{2} f(x1,x2)=x12+3x22+2x1x2=[x1x2][1113][x1x2]=xTAx  =(x12+2x1x2+x22)+2x22=(x1+x2)2+2x22 { y 1 = x 1 + x 2 y 2 = x 2 \left\{ \begin{aligned} y_1&=x_1+x_2\\ y_2&=x_2\\ \end{aligned} \right. {y1y2=x1+x2=x2则: f = [ y 1 y 2 ] [ 1 0 0 2 ] [ y 1 y 2 ] = y T U y f=\left[ \begin{matrix} y_1& y_2\\ \end{matrix} \right] \left[ \begin{matrix} 1& 0\\ 0& 2\\ \end{matrix} \right] \left[ \begin{array}{c} y_1\\ y_2\\ \end{array} \right] =\boldsymbol{y}^T\boldsymbol{Uy} f=[y1y2][1002][y1y2]=yTUy使用配方法一定可以将任意二次型转换为标准型
接下来求合同变换矩阵 P \boldsymbol{P} P
{ y 1 = x 1 + x 2 y 2 = x 2 \left\{ \begin{aligned} y_1&=x_1+x_2\\ y_2&=x_2\\ \end{aligned} \right. {y1y2=x1+x2=x2写成矩阵形式: [ y 1 y 2 ] = [ 1 1 0 1 ] [ x 1 x 2 ] \left[ \begin{array}{c} y_1\\ y_2\\ \end{array} \right] =\left[ \begin{matrix} 1& 1\\ 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] [y1y2]=[1011][x1x2]
[ x 1 x 2 ] = [ 1 − 1 0 1 ] [ y 1 y 2 ] \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] =\left[ \begin{matrix} 1& -1\\ 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} y_1\\ y_2\\ \end{array} \right] [x1x2]=[1011][y1y2]
于是存在 P = [ 1 − 1 0 1 ] \boldsymbol{P}=\left[ \begin{matrix} 1& -1\\ 0& 1\\ \end{matrix} \right] P=[1011]
使得: P T A P = U = [ 1 0 0 2 ] \boldsymbol{P}^T\boldsymbol{AP}=\boldsymbol{U}=\left[ \begin{matrix} 1& 0\\ 0& 2\\ \end{matrix} \right] PTAP=U=[1002]

9.5 合同变换化二次型为标准型的几何意义

f ( x 1 , x 2 ) = x 1 2 + 3 x 2 2 + 2 x 1 x 2 = a f\left( x_1,x_2 \right) =x_{1}^{2}+3x_{2}^{2}+2x_1x_2=a f(x1,x2)=x12+3x22+2x1x2=a f ( y 1 , y 2 ) = y 1 2 + 2 y 2 2 = a f\left( y_1,y_2 \right) =y_{1}^{2}+2y_{2}^{2}=a f(y1,y2)=y12+2y22=a
两者在几何上均表示椭圆。不同点在于:含有交叉项的椭圆长轴、短轴与坐标轴不共线,只含有平方项的椭圆长轴、短轴与坐标轴共线
平面上的齐次二次曲线有椭圆双曲线两类;空间上的齐次二次曲面有椭球面单叶双曲面双叶双曲面椭圆柱面双曲柱面共五类。
合同变换可以将这些超曲面所在空间的基向量组施加变换,同时保持超曲面的类型不变。如果变换的结果是对角阵,则超曲面的正交方向轴和坐标轴共线。

9.6 正交变换

合同变换能保证变换后二次型类型不变,但是不一定能做到全等变换。
设二次型 f = x T A x f=\boldsymbol{x}^T\boldsymbol{Ax} f=xTAx,存在可逆合同变换 Q \boldsymbol{Q} Q使得 U = Q T A Q \boldsymbol{U}=\boldsymbol{Q}^T\boldsymbol{AQ} U=QTAQ f = y T U y f=\boldsymbol{y}^T\boldsymbol{Uy} f=yTUy成立, U \boldsymbol{U} U为对角矩阵。要使变换前后图形不变,则变换前后任意一点到原点距离不变,即: ∥ x ∥ = ∥ y ∥ \left\| \boldsymbol{x} \right\| =\left\| \boldsymbol{y} \right\| x=y,亦即 x T x = y T y \boldsymbol{x}^T\boldsymbol{x}=\boldsymbol{y}^T\boldsymbol{y} xTx=yTy。于是:
x T x = y T y x = Q y } ⟹ ( Q y ) T Q y = y T y \left. \begin{array}{c} \boldsymbol{x}^T\boldsymbol{x}=\boldsymbol{y}^T\boldsymbol{y}\\ \boldsymbol{x}=\boldsymbol{Qy}\\ \end{array} \right\} \Longrightarrow \left( \boldsymbol{Qy} \right) ^T\boldsymbol{Qy}=\boldsymbol{y}^T\boldsymbol{y} xTx=yTyx=Qy}(Qy)TQy=yTy即: y T ( Q T Q ) y = y T y \boldsymbol{y}^T\left( \boldsymbol{Q}^T\boldsymbol{Q} \right) \boldsymbol{y}=\boldsymbol{y}^T\boldsymbol{y} yT(QTQ)y=yTy,于是
Q T Q = E \boldsymbol{Q}^T\boldsymbol{Q}=\boldsymbol{E} QTQ=E可见当变换矩阵为正交矩阵时,合同变换前后二次型保持不变。
而且,对于正交矩阵, Q T = Q − 1 \boldsymbol{Q}^T=\boldsymbol{Q}^{-1} QT=Q1,于是:
于二次型 f = x T A x f=\boldsymbol{x}^T\boldsymbol{Ax} f=xTAx中,使用正交矩阵 Q \boldsymbol{Q} Q对实对称矩阵 A \boldsymbol{A} A进行合同变换得到对角矩阵 U \boldsymbol{U} U,则 U = Q T A Q = Q − 1 A Q \boldsymbol{U}=\boldsymbol{Q}^T\boldsymbol{AQ}=\boldsymbol{Q}^{-1}\boldsymbol{AQ} U=QTAQ=Q1AQ通过该方式能保证变换前后二次型类型、形状不变,而且还构建了相似对角化正交变换之间的关系,即可以使用相似对角化的方法解决化二次型为标准型的问题。

不论是9.4中的配方法,还是9.6中的正交变换法,其结果都不是唯一的,因此可以得出结论:二次型的标准型不是唯一的。从几何直观上可以理解,要想将一个“歪斜”的图形“摆正”,其方法当然不止一种。

9.7 二次型的规范型

规范型是特殊的标准型,在标准型的基础上再次进行换元,使得平方项的系数只能取 0 0 0 1 1 1 − 1 -1 1。因为合同变换不改变二次型的图形类别,因此规范型是唯一的。
惯性定理的通俗理解:图像类型不会发生改变,因此不同的标准型平方项前的正负不会发生改变。
因此,可用惯性指数判断二次型的类别。

特征值表示曲线类型
两正椭圆
两负
一正一负双曲线
一非零,一零两条平行直线
特征值表示曲面类型
三正椭球面
三负
两正一负单叶双曲面
两负一正双叶双曲面
两正一零椭圆柱面
两负一零
一正一负一零双曲柱面
一非零两零两平行平面

如果两矩阵合同,则表示这两个矩阵所对应的图形类别相同,即正负惯性指数相同。因此,解题时可利用这一结论快速排除错误答案。

9.8 正定二次型

对于二次型 f = x T A x f=\boldsymbol{x}^T\boldsymbol{Ax} f=xTAx,若在 x ≠ 0 \boldsymbol{x}\ne 0 x=0时总有 f > 0 f>0 f>0成立,则称 f f f是正定二次型,实对称矩阵 A \boldsymbol{A} A是正定矩阵;若在 x ≠ 0 \boldsymbol{x}\ne 0 x=0时总有 f < 0 f<0 f<0成立,则称 f f f是负定二次型,实对称矩阵 A \boldsymbol{A} A是负定矩阵。
n n n元二次型 f f f是正定二次型的充要条件有以下几个:

  • 实对称矩阵 A \boldsymbol{A} A的所有特征值都是正数,即 f f f标准形中 n n n个系数均为正数
  • 二次型 f f f的正惯性指数是 n n n,即它规范形里 n n n个系数都是 1 1 1
  • 方程 f = c ( c > 0 ) f=c\left( c>0 \right) f=c(c>0)表示一个超椭球(平面上为椭圆,空间上为椭球)
  • 实对称矩阵 A \boldsymbol{A} A的全体顺序主子式都是正数

正定二次型的应用

  • 求解和证明不等式恒成立问题
  • 最小二乘法求解问题
  • 多项式因式分解问题
  • 多元函数求极值问题(Hessian矩阵)

参考文献

  1. UP主汉语配音-【线性代数的本质】合集-转载于3Blue1Brown官方双语】
  2. 【熟肉】线性代数的本质 - 01 - 向量究竟是什么?
  3. 线性代数的本质(完整版)
  4. 【二次型】解与最值,初中生都会的问题居然是考研大题…
  5. 【俗说矩阵】二次型是什么?它和矩阵有什么关系?看完你就懂啦!
  6. 如何通俗地解释合同矩阵
  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值