Sparse Methods for Direction-of-Arrival Estimation 稀疏重建和DOA估计(1)

在本节中,我们将介绍稀疏表示的基础知识,这是一个非常活跃的研究课题,特别是在过去的十年中。更重要的是,我们将讨论它与DOA估计的联系以及与DOA估计的关键区别

3.1稀疏表示和压缩感知

3.1.1问题表述

我们首先介绍了稀疏表示的主题和与之密切相关的压缩感知的概念,这些概念在图像、音频和信号处理、通信、医学成像和计算生物学等领域有着广泛的应用(例如,参见几种期刊上的各种专刊[24-27])。 设y∈C(M)是我们观察到的信号。 我们希望通过以下模型稀疏地表示Y:

其中 A ∈ CM×N 是给定的矩阵,其中 M << N,称为字典,其列称为原子,x ∈ CN 是稀疏系数向量, e表示误差。我们所说的稀疏性是指 x 中只有少数条目(例如 K << N)非零,其余条目为零。这与 (16) 一起意味着 y 可以很好地近似为 A 中 K 原子的线性组合稀疏表示的潜在动机是,即使观察到的数据 y 位于高维空间中,它实际上可以在某些低维子空间(K < M)中很好地近似。给定 y 和 A,稀疏表示的问题是找到满足数据一致性的稀疏向量 x。

稀疏表示的概念后来在压缩感知的框架内得到扩展[13-15]。在压缩感知中,由稀疏向量 x 表示的稀疏信号是从欠采样线性测量 y 中恢复的,即系统模型 (16) 适用于 M << N。在这种情况下,y 被称为压缩数据, A 是传感矩阵,e 表示测量噪声。请注意,如果感兴趣的信号在某些域中稀疏,则适用类似于(16)的数据模型。给定y和A,压缩感知中的稀疏信号恢复问题也是要解决满足数据一致性的稀疏向量x。在不产生歧义的情况下,我们不会区分用于稀疏表示和压缩感知的术语,因为这两个问题非常相似。

为了解决稀疏信号,直观上,我们应该找到最稀疏的解决方案。因此,在没有噪声的情况下,我们应该解决以下优化问题:

将 A 视为其列向量的集合,并定义其spark,如第 2.3 节中所示,用spark (A) 表示。可以证明,真正的稀疏信号 x 可以由式(17)唯一确定, 如果 x 的稀疏度为:

注:这里简单证明了 x can be uniquely determined by (17) if x satisfy (18).

不幸的是,(17)中的L0优化问题是NP难解问题。因此,需要更有效的方法。我们注意到,已经提出了许多用于稀疏信号恢复的方法和算法,例如凸松弛或L1优化[11, 12]、Lq、0 < q < 1(伪)范数优化[28-34]、贪婪正交匹配追踪(OMP)、压缩采样匹配追踪(CoSaMP)和子空间追踪(SP)[35-40]、迭代硬阈值(IHT)[41]、最大似然估计(MLE)等算法。读者可以请参阅[42]进行审查。在这里,我们在接下来的小节中介绍凸松弛、Lq 优化和 MLE。

3.1.2 Convex Relaxation

我们将介绍的第一个稀疏信号恢复实用方法是基于凸松弛,它用最严格的凸松弛(即 L1 范数)代替 L0 范数。因此,我们解决以下优化问题来代替(17):

有时称为基础追踪(BP)[11]。由于 L1 范数是凸的,因此(19)可以在多项式时间内求解。事实上,使用L1优化来获得稀疏解可以追溯到有关地震数据恢复的论文[43]。虽然根据经验观察 BP 具有良好的性能,但几十年来一直没有提供严格的分析。

为了引入(19)中BP的现有理论保证,我们定义了矩阵A的一个度量,称为相互相干性,它量化了A中原子之间的相关性[12]。

定义 3.1 矩阵 A 的相互相关性 µ (A) 是 A 的任意两列之间的最大绝对相关性,即

直观上,如果 A 中的两个原子高度相关,那么将很难区分它们对测量 y 的贡献。在极端情况下,当两个原子完全相干时,将无法区分它们的贡献,因此无法恢复稀疏信号 x。因此,为了保证信号成功恢复,互相关性μ(A)应该很小。根据以下定理,这是正确的。

另一个理论保证是基于受限等距性质(RIP),它以不同的方式量化 A 中原子的相关性,并且在压缩传感的发展中很流行。

根据定义,具有小 RIC 的矩阵在应用于稀疏向量时执行近似正交/酉变换。 [45]中提供了以下理论保证。

经过[45]的工作,RIP条件得到了改善,例如达到δ2K < 3 /(4+ √ 6) [46]。其他类型的 RIP 条件也可用,例如[47]中的 δK < 0.307。众所周知,与相互一致性相比,使用 RIP 可以提供更强的结果。但值得注意的是,与给定矩阵 A 可以轻松计算的互相关性不同,计算 A 的 RIC 的复杂度可能会随着稀疏度 K 的增加而急剧增加。

在存在噪声的情况下,我们可以解决以下正则化优化问题,通常称为最小绝对收缩和选择算子(LASSO)[48]:

其中 λ > 0 是要指定的正则化参数,或基追踪去噪 (BPDN) 问题:

其中 η ≥ ||e||2 是噪声能量的上限。注意,对于适当选择 λ 和 η,(21) 和 (22) 是等价的,并且在无噪声情况下,通过让 η, λ → 0 都退化为 BP。在与上述类似的 RIP 条件下,已经证明稀疏信号 x 可以稳定地重建,重建误差与噪声水平成正比[45]。

除了(21)和(22)之外,另一种稀疏恢复的L1优化方法是所谓的平方根LASSO[49]:

其中 τ > 0 是正则化参数。与 LASSO 相比,LASSO 的噪声通常被假设为高斯分布,并且正则化参数 λ 的选择与噪声的标准差成正比,SR-LASSO 需要对噪声分布进行较弱的假设,并且 τ 可以选择为常数这与噪声水平无关[49]。

(19)、(21)、(22)和(23)中的L1优化问题是凸的,并且保证在多项式时间内可解;然而,在问题维数较高的情况下,由于 L1 范数不是平滑函数,因此很难有效地求解它们。过去十年在加速计算方面取得了重大进展。例子包括 L1-magic [50]、内点法 [51]、共轭梯度法 [52]、定点连续 [53]、Nesterov 连续平滑技术 (NESTA) [54, 55]、ONE-L1算法[56]、乘法器交替方向法(ADMM)[57, 58]等。

接下来将就DOA_LASSO问题的求解算法进行学习与整理。

  • 30
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值