22. 括号生成

题目描述:

给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。

例如,给出 n = 3,生成结果为:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

解题思路1:

  题目可以抽象为用"("")"填满2n个空间,并且需要判断左括号和右括号的个数是否相等。

  为了检查序列是否有效,我们遍历这个序列,并使用一个变量 num 表示左括号的数量减去右括号的数量。如果在遍历过程中 num 的值小于零,或者结束时 num 的值不为零,那么该序列就是无效的,否则它是有效的。


代码1:

class Solution(object):
    def generateParenthesis(self, n):
        def generate(A):
            if len(A) == 2*n:
                if valid(A):
                    ans.append("".join(A))
            else:
                A.append('(')
                generate(A)
                A.pop()
                A.append(')')
                generate(A)
                A.pop()
        def valid(A):
            num = 0
            for c in A:
                if c == "(": num += 1
                else: num -= 1
                if num < 0: return False  # 当出现类似['(',')',')'...]的情况时,提前终止
            return num == 0  # 判断num的值是否为0来返回True或者False

        ans = []
        generate([])
        return ans


s = Solution()
n = 3
print(s.generateParenthesis(n))

解题思路2:

  任何一个括号序列都一定是由 ( 开头,并且第一个 ( 一定有一个唯一与之对应的 )。这样一来,每一个括号序列可以用 (a)b 来表示,其中 a 与 b 分别是一个合法的括号序列(可以为空)。

  那么,要生成所有长度为 2 * n 的括号序列,我们定义一个函数 generate(n) 来返回所有可能的括号序列。


代码2:

from functools import lru_cache
class Solution:
    @lru_cache(None)
    def generateParenthesis(self, n):
        if n == 0:
            return ['']
        ans = []
        for c in range(n):
            for left in self.generateParenthesis(c):
                for right in self.generateParenthesis(n-1-c):
                    ans.append('({}){}'.format(left, right))
        return ans


s = Solution()
n = 3
print(s.generateParenthesis(n))

题解来源:

力扣


题目来源:

https://leetcode-cn.com/problems/generate-parentheses/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值