杭电ACM 2049 不容易系列之(4)——考新郎(组合+错排)

HDU 2049 不容易系列之(4)——考新郎

题目

Problem Description
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板…

看来做新郎也不是容易的事情…

假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。

Output
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。

Sample Input
2
2 2
3 2

Sample Output
1
3

分析

① 分析题意可知,此题需要先求N个新郎中有M个选错的新朗的组合情况,也就是C(N,M),然后M个选错的新郎中求出其错位重排的所有情况。据上可知最后的结果=组合数 * 错位重排数
② 组合:求从N个取M个的组合公式为C(N,M)=N!/M!/(N-M)!;其中!为阶乘,由于这里已知N和M,所以问题就简单很多了,只需要通过代码实现公式即可。这次采用的方法是打一个阶乘表a[21]。
错位重排
f[i]i个数错位排序 (任意1<=i<=n a[i]!=i)

f[0]=1,f[1]=0;

f[n]=(n-1)*(f[n-1]+f[n-2])

递推过程:
情况1:插入第n个元素时,前n-1个已经错位排好,则选择其中任意一个与第i个互换一定满足要求,选择方法共n-1种,前n-1位错排f[n-1]种,记f[n-1]*(n-1)

情况2:插入第n个元素时,前n-1个中恰有一个元素a[m]使得a[m]=m,其他n-2个错位排好,则将n与m交换,m在n-2位中的插入共n-1种,前n-2位错排f[n-2]种,记f[n-2]*(n-1)

以上两种情况求和可得

f[n]=(n-1)*(f[n-1]+f[n-2])

代码

/*组合+错排
组合:C(M,N)+=N!/(M!*(N-M)!)。即C(M,N)=N!/M!/(N-M)!。
错排:f[n]=(n-1)*(f[n-1]+f[n-2])。
*/

#include <stdio.h>
int main() {
	int c,n,m,i;
	long long num = 0;
	long long a[21] = {1,1,2};		//阶乘表 
	long long b[21] = {0,1,1,2};		//错位重排数表 
	for(i=3; i<21; i++) {		//求阶乘
		a[i]=i*a[i-1];
	}
	for(i=4; i<21; i++) {		//求错排数组
		b[i]=(i-1)*(b[i-1]+b[i-2]);
	}

	scanf("%d",&c);
	while(c--) {
		scanf("%d%d",&n,&m);
		num = a[n]/a[m]/a[n-m] * b[m];
		printf("%lld\n",num);
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值