HDU 2049 不容易系列之(4)——考新郎
题目
Problem Description
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板…
看来做新郎也不是容易的事情…
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。
Output
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
Sample Input
2
2 2
3 2
Sample Output
1
3
分析
① 分析题意可知,此题需要先求N个新郎中有M个选错的新朗的组合情况,也就是C(N,M),然后M个选错的新郎中求出其错位重排的所有情况。据上可知最后的结果=组合数 * 错位重排数
② 组合:求从N个取M个的组合公式为C(N,M)=N!/M!/(N-M)!
;其中!为阶乘,由于这里已知N和M,所以问题就简单很多了,只需要通过代码实现公式即可。这次采用的方法是打一个阶乘表a[21]。
③ 错位重排:
设f[i]
为i
个数错位排序 (任意1<=i<=n a[i]!=i
)
f[0]=1,f[1]=0;
f[n]=(n-1)*(f[n-1]+f[n-2])
递推过程:
情况1:插入第n个元素时,前n-1个已经错位排好,则选择其中任意一个与第i个互换一定满足要求,选择方法共n-1种,前n-1位错排f[n-1]种,记f[n-1]*(n-1)
情况2:插入第n个元素时,前n-1个中恰有一个元素a[m]使得a[m]=m,其他n-2个错位排好,则将n与m交换,m在n-2位中的插入共n-1种,前n-2位错排f[n-2]种,记f[n-2]*(n-1)
以上两种情况求和可得
f[n]=(n-1)*(f[n-1]+f[n-2])
代码
/*组合+错排
组合:C(M,N)+=N!/(M!*(N-M)!)。即C(M,N)=N!/M!/(N-M)!。
错排:f[n]=(n-1)*(f[n-1]+f[n-2])。
*/
#include <stdio.h>
int main() {
int c,n,m,i;
long long num = 0;
long long a[21] = {1,1,2}; //阶乘表
long long b[21] = {0,1,1,2}; //错位重排数表
for(i=3; i<21; i++) { //求阶乘
a[i]=i*a[i-1];
}
for(i=4; i<21; i++) { //求错排数组
b[i]=(i-1)*(b[i-1]+b[i-2]);
}
scanf("%d",&c);
while(c--) {
scanf("%d%d",&n,&m);
num = a[n]/a[m]/a[n-m] * b[m];
printf("%lld\n",num);
}
return 0;
}