知识补充:
1.时域与频域:
1)时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号时描述信号在不同时刻取值的函数。
2)频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常所说的频谱图。

3)频域与时域本身就是对称的,存在相互的制约关系:时域的连续信号对应频域的非周期,离散对应周期;时域的周期对应频域的离散,非周期对应连续。
1.傅里叶级数(Fourier series,FS)
连续、周期信号 --> 非周期、离散

任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅里叶级数为一种指数级数。
上式称为函数的正交展开式,也称为广义傅里叶级数。

本文探讨了时域与频域的概念,介绍了傅里叶级数如何将周期函数转化为非周期形式,以及离散傅里叶级数和变换的区别。重点讲解了傅里叶变换及其在连续非周期信号分析中的应用,包括快速傅里叶变换(FFT)和离散余弦变换(DCT)。
最低0.47元/天 解锁文章
1108

被折叠的 条评论
为什么被折叠?



