关于价格指数的定义,《CPI手册》中指出价格指数用于衡量一组价格在某一时期的相应变化幅度或百分比变化,它可以衡量当特定商品或服务价格发生变化对该组相对价格变动的影响,但由于不同商品和服务的价格变化并非同步,价格指数反映的是“平均”变化。例如,以某一时期为基期,该时期价格指数为 1或100,而其他时期的价格指数表示为相对于价格基期而言的平均变化幅度或百分比变化。价格和价格指数分别从绝对水平和相对水平角度反映不同时期商品和服务价格水平的变化方向、趋势和程度,但价格由于受到量纲和商品价值等影响,难以从直观上真实反映价格水平的变化,因此常用价格指数来研究价格动态变化,进而为制定、调整各项经济政策提供依据。
价格指数可以有很多种分类方法,按照测定对象的范围可以分为个体价格指数和总体价格指数,按照测定对象的种类可以分为消费者价格指数、生产者价格指数等。一个最普遍的分类方式是按照指数的编制方式进行分类,如拉氏价格指数、帕氏价格指数、费雪价格指数,总之,价格指数是一个相对的概念,不同的计算方法将得出不同的价格指数。
同质性和异质性
如同前面的文章一样,我们还是从编制方法的角度对价格指数的几种主要编制方法进行简单的介绍。在系统的介绍价格指数编制方法之前,有一个重要的概念需要事先了解清楚。就是同质性和异质性问题。
我们说某个商品是同质的,也就是消费者认为该种产品的性能、花色、品质、造型等方面的区别不大,在消费时可以完全相互替代,在价格表现上是等价的。像股票、比特币这些属于完全同质的产品,因为相同的一股股票的价格是完全等价的;像大米、煤炭这类商品,在我们给定限定条件的情况下,可视为同质的。例如等级为一级的东北大米,热量值为5500大卡的煤炭等。而像书画艺术品、房屋等这些具有个性化的商品,同质性不强,就叫做异质性商品。例如同样是齐白石画的一幅画价格相差会很大,在同一个小区内的两套房子,会因为面积、楼层、户型、朝向等因素的影响而具有不同的价格。
在编制价格指数之前我们需要了解清楚指数标的是同质性的还是异质性的,因为标的物属性的不同,可能采用的编制方法就会不同。像同质性的标的物我们一般采用加权平均的方法,其中最常用的是拉式指数和派式指数,如果是异质性的标的物,我们可以采用特征价格法和重复交易法等。
除了同质性和异质性问题需要搞清楚外,我们在编制指数之前还需要搞清楚标的物的标准、数据可得性、更新周期等信息。只有在对标的物有了充分了解之后,才能进行有效的价格指数设计环节。
拉式指数和派式指数
在价格指数编制的历史中,最为常见的是加权指数。加权指数中,最常见的是拉氏指数和派氏指数,除此之外还有Young指数、Marshall指数、Walsh指数、Drobish指数、Sidgwick指数、Bowley指数,以及后来的Pigou指数等。这些指数所不同的是权数的选择上。而所有这些都可称为固定篮子指数。那么固定篮子指数中哪一个或哪几个指数更优、更适用,下面我们先比较一下固定篮子指数中最常用的拉氏和派氏指数。
1871年,德国经济学家Laspeyres在《平均商品价格上涨的计算》一文中,提出了以基期的数量为权数计算价格指数的方法,这就是著名的拉氏价格指数。同度量因素的引进,不仅解决了不同计量单位的总体单位不能直接相加的矛盾,客观上也起到了权重的作用。其计算公式如下:
P
L
=
∑
p
1
q
0
∑
p
0
q
0
P_L=\frac{∑p_1 q_0}{∑p_0 q_0 }
PL=∑p0q0∑p1q0
正如我们今天在计算加权综合指数时,对是用基期还是报告期的数量作为权数这一问题存有争议一样,在当时,对这一问题也有不同的看法。1874年,德国经济学家和政治家Hermann Paasche在《关于来自汉堡交易所记载的去年物价发展情况》一文中,提出将同度量因素固定在报告期,并认为用报告期做权数计算价格指数是较为合理的,从而形成了著名的派氏价格指数。其公式如下:
P
p
=
∑
p
1
q
1
∑
p
0
q
1
P_p=\frac{∑p_1 q_1}{∑p_0 q_1 }
Pp=∑p0q1∑p1q1
在拉氏和派氏指数公式问世以后,学术界给予了很高的评价,许多经济学家或学者,又再此基础上进行了改进和完善。
拉氏指数和派氏指数最大的区别是选择基期还是报告期产品篮子作为计算价格指数的基准,拉氏选择基期而派氏选择报告期作为权数。拉氏指数可以看作价比的加权算术平均,派氏价格指数则可以看作是价比的加权调和平均。这里,前者的权数是基期产品的支出份额,后者的权数是报告期产品的支出份额。
对于这两个指数的优劣,在理论上似乎很难区分,而在实践中不同领域的价格指数在选择上也会不同,如宏观经济价格指数大多使用拉氏指数,但在计算股票价格指数时,几乎所有国家都采用派氏价格指数。这是因为股票价格及交易量是在场内进行交易的,可以实时进行,及时准确,便于采集,而在其他领域不可能及时采集到准确无误的的价格及报告期支出份额,所以为保证数据的及时有效,多采用拉氏指数。所以我们看出,采用拉氏还是派氏价格指数主要还是由于所能提供资料的程度决定的。
链式拉式指数
从拉式指数的编制方法上可以看出,拉式指数权重是采用基期权重,所以在实际计算中存在不能反映结构变化的缺陷。即如果样本结构发生了变化(无论是样本数量还是样本比例发生变化),拉式规则下的指数不能够反映这种变化带来的指数数值上的变化。
为了解决这一问题引进了链式拉式公式,链式拉式公式是在拉氏公式基础上采用每年更新权数和低层次分类指数几何平均的方法,克服了原来拉氏公式的不足,计算结果更为准确。实际上链式拉式公式就是在拉式公式的基础上增加了结构和权重更新的机制。在计算方法上可以理解为拉式指数是定基比的方法计算报告期指数,而链式拉式指数则是变为先计算环比指数,然后合成定基指数,通过环比形式合成定基,就能够解决因结构变化带来的计算误差问题。链式拉式公式如下:
L
t
=
[
∑
W
t
−
1
P
t
P
t
−
1
]
L
t
−
1
L_t=[\sum W_{t-1} \frac{P_t}{P_{t-1}}] L_{t-1}
Lt=[∑Wt−1Pt−1Pt]Lt−1
为了方便理解,下面举一个简单的例子。以我们日常菜篮子为例,如下表所示
假设篮子里有两种物品,分别为肉和菜,p0,p1,p2,p3分别为四个时期价格,q0为p0时期的销售量,q2为p2时期的销售量(这里需要注释一下,不是每个时期都能够统计到销售量,所以本例是在某些特定时点对销售量进行更新)。
按照拉式公式进行指数计算的话,假设基期指数为100,则有:
I
0
=
100
I_0=100
I0=100
I
1
=
p
1
q
0
p
0
q
0
∗
I
0
=
16
∗
50
+
3
∗
100
15
∗
50
+
2
∗
100
∗
100
=
1100
950
∗
100
=
115.7895
I_1=\frac{p_1 q_0}{p_0 q_0 }*I_0=\frac{16*50+3*100}{15*50+2*100}*100=\frac{1100}{950}*100\\=115.7895
I1=p0q0p1q0∗I0=15∗50+2∗10016∗50+3∗100∗100=9501100∗100=115.7895
I
2
=
p
2
q
0
p
0
q
0
∗
I
0
=
17
∗
50
+
4
∗
100
15
∗
50
+
2
∗
100
∗
100
=
1250
950
∗
100
=
131.5789
I_2=\frac{p_2 q_0}{p_0 q_0 }*I_0=\frac{17*50+4*100}{15*50+2*100}*100=\frac{1250}{950}*100\\=131.5789
I2=p0q0p2q0∗I0=15∗50+2∗10017∗50+4∗100∗100=9501250∗100=131.5789
I
3
=
p
3
q
0
p
0
q
0
∗
I
0
=
18
∗
50
+
5
∗
100
15
∗
50
+
2
∗
100
∗
100
=
1400
950
∗
100
=
147.3684
I_3=\frac{p_3 q_0}{p_0 q_0 }*I_0=\frac{18*50+5*100}{15*50+2*100}*100=\frac{1400}{950}*100\\=147.3684
I3=p0q0p3q0∗I0=15∗50+2∗10018∗50+5∗100∗100=9501400∗100=147.3684
按照链式拉式指数计算的话:
L
1
=
p
1
q
0
p
0
q
0
=
16
∗
50
+
3
∗
100
15
∗
50
+
2
∗
100
=
1100
950
=
1.157895
L_1=\frac{p_1 q_0}{p_0 q_0 }=\frac{16*50+3*100}{15*50+2*100}=\frac{1100}{950}=1.157895
L1=p0q0p1q0=15∗50+2∗10016∗50+3∗100=9501100=1.157895
L
2
=
p
2
q
0
p
1
q
0
=
17
∗
50
+
4
∗
100
16
∗
50
+
3
∗
100
=
1250
1100
=
1.136364
L_2=\frac{p_2 q_0}{p_1 q_0 }=\frac{17*50+4*100}{16*50+3*100}=\frac{1250}{1100}=1.136364
L2=p1q0p2q0=16∗50+3∗10017∗50+4∗100=11001250=1.136364
L
3
=
p
3
q
2
p
2
q
2
=
18
∗
25
+
5
∗
100
17
∗
25
+
4
∗
100
=
950
825
=
1.151515
L_3=\frac{p_3 q_2}{p_2 q_2 }=\frac{18*25+5*100}{17*25+4*100}=\frac{950}{825}=1.151515
L3=p2q2p3q2=17∗25+4∗10018∗25+5∗100=825950=1.151515
则:
I
0
=
100
I_0=100
I0=100
I
1
=
I
0
L
1
=
100
∗
1.157895
=
115.7895
I_1=I_0 L_1=100*1.157895=115.7895
I1=I0L1=100∗1.157895=115.7895
I
2
=
I
0
L
1
L
2
=
100
∗
1.157895
∗
1.136364
=
131.5789
I_2=I_0 L_1 L_2=100*1.157895*1.136364=131.5789
I2=I0L1L2=100∗1.157895∗1.136364=131.5789
I
3
=
I
0
L
1
L
2
L
3
=
100
∗
1.157895
∗
1.136364
∗
1.151515
=
151.5152
I_3=I_0 L_1 L_2 L_3=100*1.157895*1.136364*1.151515=151.5152
I3=I0L1L2L3=100∗1.157895∗1.136364∗1.151515=151.5152
需要注意的是,在链式拉式计算每一期环比变化的时候所用的销售量数据是报告期前一期的销售量。
从上述拉式指数和链式拉式指数的结果可以看到,
I
0
,
I
1
,
I
2
I_0,I_1,I_2
I0,I1,I2的值是相同的,
I
3
I_3
I3的值有所不同,采用拉式公式计算最终值为147.3684,而链式拉式计算结果为151.5152。
再返回我们的例子主题上看,肉的价格变化是从15增长到18,菜的价格是从2涨到了5,显然是菜的价格涨的更快。另外在p2期销售量发生了变化,肉的销量从50变成25,菜的销售量依旧还是100。也就是说从p2期开始菜篮子中肉的比例变小了,所以肉价格对篮子价格的影响相应减少,而菜的价格对篮子价格的影响应该是变大的。而采用拉式指数实际上是没有体现这一结构性变化的,链式拉式指数体现了这一变化对篮子价格的影响。所以链式拉式价格指数更加准确反映了篮子价格的变化趋势。
在价格指数编制中,当样本结构发生变化的时候,有时会采用除数修正法对指数进行修正,这种方法比较常见于股票价格指数计算中。
除数修正法,又称道式修正法,是美国道·琼斯公司为克服单纯平均法的不足,在1928年发明的一种计算股票价格平均数的方法。
除数修正法的核心是求出一个常数除数,去修正因有偿增资、股票分割等因素造成的股价总额的变化,以便如实反映平均股价水平。
具体方法是:以发生上述情况变化后的新股价总额为分子,旧的股价平均数为分母,计算出一个除数,然后去除报告期的股价总额,所得出的股价平均数称为道式修正平均股价,其计算公式为:
道式除数=变动后新的股价总额/旧的股份平均数
道式修正平均股价=报告期股价总额/道式除数
一个好的价格指数的基本特性
对于这么多价格指数计算公式,我们很难检验出哪个指数公式是最优的,不过我们可以从其他方面给出一个评价标准,判断一个价格指数是好的、优秀的。
1. 平均性
总指数作为反映总体中个体量变动的总方向和总幅度的指标,必须首先是个体指数的代表值。由数学期望的意义可知,如果要计算个体指数的代表值,就必须计算这些个体指数的平均数,所以指数要具有平均性。我们知道,算术平均数指数、调和平均数指数、几何平均数指数都是个体指数的平均数,因而都具有平均性。而综合指数也可以化为算术平均数指数和调和平均数指数,所以也具有平均性。
2. 综合性
指数并非只是一个抽象化的代表值,它还必须具备实在的经济含义。如股票价格指数表示股票价格总的变动。因此,指数的构造要受到客观经济现象本身特点的制约,其计算过程要有一定的实际经济意义。因为指数说明的是不同时期的某种综合数量变动或对比关系,最终可以变形为两个有独立意义的综合数量之比。这一特性,可称为综合性。前面的公式中简单综合指数、简单算术平均数指数和几何平均数指数及简单调和平均数指数都不具有综合性。
3. 无偏性
我们知道,总指数应该准确反映出所有个体量的总变动方向和幅度,这就要求指数作为反映总体每个个体总变动的代表值,不应该存在系统偏差。在考察指数是否具有无偏时,首先要求其具有平均性和综合性,而在综合指数中,由于权数的选择不同,就会有不同的平均值,因而会存在着由于权数选择不当而引起的系统偏差,达不到计算指数的目的。因此,一个好的指数,权数的选择也是关键的一环,是保证指数具有无偏性的首要条件。我们所熟知的拉氏和派氏指数都同时具备平均性和综合性,但它们却都存在着偏误,不符合无偏性这一特性。拉氏指数和派氏指数的偏误就是由于选择的权数不当而引起的结构性偏误,由于二者偏误的方向相反,所以取二者权数的平均数作为综合指数公式中的权数,就可消除偏误。这样就可以钩造出一种没有偏误的指数。
4. 一致性
指数作为估计量应该同总体相应指标之间的差距随着代表品样的增大而减少,使大样本下的指数能比较好的代表总体指标的数值,能更接近客观经济现象变化的真实状态,这一特性称为一致性。
5. 有效性
对同一样本,采用不同的指数公式,会得到不同的指数值,产生不同的方差。根据统计学理论,方差越小,总体的离中趋势越小,指数值的代表性就越强,越能说明客观经济现象的真实变化情况。这种选择用方差、标准差数值小的指数来衡量经济现象变化的性质称为有效性。
All things are difficult before they are easy.