【技巧】matlab中nanmedian、nanmean和median、mean的区别

本文介绍了在使用MATLAB进行时间序列分析时如何正确处理数据集中的NaN值,详细解释了mean、median及其对应的nanmean、nanmedian函数用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日,在统计时间序列中位数(median)和均值(mean)时遇到一些小问题,导致得到的结果总是不理想。后来发现是由于没有考虑到数据中空值(NaN)的原因,特此记录,以免日后再犯同样的错误。

通过matlab的帮助文档,首先了解mean和median的概念:

median:
①M = median(A)
②M = median(A,‘all’)
③M = median(A,dim)

示例①
M = median(A) 返回 A 的中位数值。

如果 A 为向量,则 median(A) 返回 A 的中位数值。

如果 A 为非空矩阵,则 median(A) 是包含每一列的中位数值的行向量
median(A( : ))返回该二维数组的中位数
如果 A 为 0×0 空矩阵,median(A) 返回 NaN。

示例②
M = median(A,‘all’) 计算 A 的所有元素的中位数。此语法适用于 MATLAB® R2018b 及更高版本。

示例③
M = median(A,dim) 返回维度 dim 上元素的中位数。例如,如果 A 为矩阵,则 median(A,2) 是包含每一行的中位数值的列向量

mean:
①M = mean(A)
②M = mean(A,‘all’)
③M = mean(A,dim)

说明
示例①
M = mean(A) 返回 A 沿大小不等于 1 的第一个数组维度的元素的均值。

如果 A 是向量,则 mean(A) 返回元素均值。

如果 A 为矩阵,那么 mean(A) 返回包含每列均值的行向量
mean(A( : ))返回该二维数组的均值
如果 A 是多维数组,则 mean(A) 沿大小不等于 1 的第一个数组维度计算,并将这些元素视为向量。此维度会变为 1,而所有其他维度的大小保持不变。

示例②
M = mean(A,‘all’) 计算 A 的所有元素的均值。此语法适用于 MATLAB® R2018b 及更高版本。

示例③
M = mean(A,dim) 返回维度 dim 上的均值。例如,如果 A 为矩阵,则 mean(A,2) 是包含每一行均值的列向量。

nanmedian 和nanmean
nanmedian和nanmean在计算前先剔除掉了数组内的NaN值。只有有值的数据参与计算,具体示意图如下:

在这里插入图片描述

在这里插入图片描述

ps:nansum、nanmax、nanmin也是一样的原理,在数组有NaN值时,不能直接使用sum、max、min,否则得到的结果也是NaN。

您可以通过以下方法删除Google搜索历史记录: 1. 首先,在Google Chrome浏览器中,输入"chrome://version"并查看浏览器信息。在个资料路径中找到History和History-journal文件的位置。 2. 关闭浏览器,然后删除这两个文件,以删除已有的历史记录。\[1\] 如果您想要以更细微的方式删除历史记录,可以按照以下步骤进行操作: 1. 删除整个搜索历史记录以及其他相关资料。您可以在计算机旁执行以下操作,或者在Android设备上进行某些操作。\[2\] 2. 如果您不知道要删除的项目的日期,可以使用页面顶部的搜索字段进行搜索。您还可以使用“按日期和产品过滤”选项进一步缩小结果范围。找到要删除的活后,点击三点菜单,然后选择删除。\[3\] 希望这些方法能帮助您删除Google搜索历史记录。 #### 引用[.reference_title] - *1* [google 输入栏不显示历史搜索记录方法](https://blog.csdn.net/weixin_42344452/article/details/127846931)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [谷歌浏览器搜索框记录_如何清除您的Google搜索记录](https://blog.csdn.net/cum44153/article/details/109041985)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ls_y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值