此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
Google Earth Engine (GEE) :通过Landsat 8影像来分析城市热应激(UHI)区域——英国伦敦为例
本文介绍了如何利用Google Earth Engine (GEE)平台和Landsat 8影像分析城市热应激区域。首先,定义感兴趣区域并筛选符合条件的Landsat影像,计算土地表面温度(LST)。接着,提取城市区域的LST数据,并进行统计分析。通过随机森林算法训练分类器,将区域分为低、中、高和极端热应激等级,最终可视化分类结果。该方法为城市规划和环境管理提供了有效的遥感数据分析支持。原创 2025-05-15 09:00:00 · 85 阅读 · 0 评论 -
Google Earth Engine——合理解决GEE中大区域范围sentinel影像下载(tif)过程中导出到Google Drive中出现多个文件的问题
var roi =] */:定义了一个多边形(实则是矩形),传入的坐标是一组四个顶点(左上、左下、右下、右上)。:将 ROI 以红色图层的形式添加到地图。:将地图视角居中到roi。原创 2025-03-22 01:30:00 · 91 阅读 · 0 评论 -
GEE伴侣:地球引擎伴侣functionsmith函数(Python包)大语言模型LLM
该网页是 Google Earth Engine Community 仓库中的一个实验性文件,位于路径下。这个笔记本是一个开源工具,旨在帮助用户更高效地使用 Google Earth Engine 和 geemap。原创 2025-03-10 08:30:00 · 133 阅读 · 0 评论 -
Google Earth Engine——利用MCD12Q1数据(土地分类数据)计算城市化进程中的城市扩张面积的时序变化图表(芝加哥为例)
GEE训练教程——利用MCD12Q1数据(土地分类数据)计算城市化进程中的城市扩张面积的时序变化图表。原创 2025-02-14 03:00:00 · 109 阅读 · 0 评论 -
Google Earth Engine——使用Google Earth Engine (GEE)分析二氧化硫(SO2)浓度的时序变化结果分析和可视化
这段代码的主要目的是从 Sentinel-5P 卫星获取 SO₂ 数据,并对其进行处理和可视化。通过定义多个地点,计算平均 SO₂ 浓度,生成时间序列图表,以及添加图例,用户可以直观地了解 SO₂ 浓度的空间分布和时间变化趋势。原创 2025-02-13 05:00:00 · 97 阅读 · 0 评论 -
GEE 训练教程——从Sentinel-5P卫星数据中提取特定区域内的氮氧化物浓度信息,生成时间序列图表,计算平均浓度并可视化为热图
geometry: 创建一个点的几何形状,表示特定的经纬度位置。country: 加载一个国家的边界数据,并根据定义的点进行过滤。: 将国家边界添加到地图上进行可视化。: 将地图中心设置为定义的点,并设置缩放级别为8。这段代码的主要目的是从Sentinel-5P卫星数据中提取特定区域内的氮氧化物浓度信息,生成时间序列图表,计算平均浓度并可视化为热图,同时提供图例以帮助理解可视化结果。原创 2025-02-07 04:00:00 · 78 阅读 · 0 评论 -
Google Earth Engine(GEE)——全球ECMWF/ERA5/DAILY(气温、降水)逐日数据下载(全球)
ERA5是ECMWF对全球气候的第五代大气再分析。再分析将模型数据与来自世界各地的观测数据结合起来,形成一个全球完整的、一致的数据集。ERA5取代了其前身ERA-Interim再分析。ERA5 DAILY提供每天7个ERA5气候再分析参数的汇总值:2米空气温度、2米露点温度、总降水量、平均海平面气压、表面气压、10米u风分量和10米v风分量。此外,根据每小时的2米空气温度数据,计算出2米处的每日最低和最高空气温度。每日总降水值以每日总和给出。所有其他参数都以日平均数提供。ERA5的数据从1979年到原创 2025-01-30 18:09:34 · 483 阅读 · 0 评论 -
Google Earth Engine——基于sentinel-2的地形校正,拓扑校正( Sun-Canopy-Sensor + C (SCSc) 校正方法和帕特里克·伯恩斯的函数)
基于sentinel-2的地形校正,拓扑校正( Sun-Canopy-Sensor + C (SCSc) 校正方法和帕特里克·伯恩斯的函数)原创 2024-12-25 13:51:50 · 274 阅读 · 4 评论 -
Google Earth Engine 导出限制应该如何解决?(Python 和JavaScript都可解决)
在 Google 地球引擎中平铺大型导出从 Google 地球引擎导出大型栅格时,建议您将导出内容分割成多个较小的平铺。在这篇文章中,我将分享在目标投影中创建平铺导出的最佳实践,这些平铺导出可以拼接在一起,不会出现任何像素间隙或重叠。其中的关键概念是使用 crsTransform 来确保每个独立的平铺都在相同的像素网格上。在高分辨率下导出全球或国家级图像时,作业可能需要几个小时,甚至几天。为了加快非常大的导出,推荐的做法是将图像拆分成较小的瓦片,并在单独的任务中导出每个瓦片。原创 2024-11-26 07:00:00 · 508 阅读 · 0 评论 -
Google Earth Engine——基于MODIS数据的中位数和标准差计算计算Z值,基于每月中位数MODIS场景的z-score时间序列
创建基于每月中位数MODIS场景的z-score时间序列的脚本,经过云、云阴影和雪的掩膜处理。原创 2024-11-25 00:00:00 · 293 阅读 · 0 评论 -
Google Earth Engine——在GEE 中创建一个NDVI谐波时间序列,基于经过云、云阴影和雪掩膜处理的月度中位数 MODIS 数据
Google Earth Engine——在GEE 中创建一个NDVI谐波时间序列,基于经过云、云阴影和雪掩膜处理的月度中位数 MODIS 数据。原创 2024-11-24 23:30:00 · 157 阅读 · 0 评论 -
GOOGLE EARTH ENGINE——利用GEE计算和下载雪的覆盖频率(SCF)和雪的消失日期(SDD)含全球除格陵兰岛外的矢量
利用GEE计算和下载雪的覆盖频率(SCF)和雪的消失日期(SDD)原创 2024-11-17 19:00:00 · 253 阅读 · 0 评论 -
Google Earth Engine——利用sentinel-2数据计算叶绿素系列指数Cab、Cm、Cw、LAI、laiCab、laiCw和laiCm
Cab(叶绿素a/b比值):Cab是叶绿素a和叶绿素b的比值,用于评估叶绿素的光合效率。叶绿素是植物中的重要色素,能够吸收光能进行光合作用。Cab的值越高,表示植物叶片中叶绿素a的含量相对较高,说明植物具有更高的光合效率。Cm(叶绿素含量):Cm是叶绿素在叶片单位面积上的含量。叶绿素是植物中的主要光合色素,可以吸收太阳光能进行光合作用。Cm的值反映了植物叶片中叶绿素的含量,高值表示植物叶片中叶绿素丰富,通常与光合作用的效率和生长发育有关。Cw(叶片水分含量):Cw是叶片中的水分含量。原创 2024-11-11 09:00:00 · 298 阅读 · 0 评论 -
GEE 使用 JavaScript 中的 API 自动删除文件夹内的所有资产
使用 JavaScript 中的 API 自动删除文件夹内的所有资产。原创 2024-11-07 02:30:00 · 94 阅读 · 0 评论 -
Google Earth Engine:如何利用将海岸线进行偏移(shoreline-raster-chip数据为例)
如何利用将海岸线进行偏移(shoreline-raster-chip数据为例)原创 2024-10-09 06:00:00 · 710 阅读 · 0 评论 -
GEE 案例:利用Landsat578影像创建某区域长时序影像动画
如果你不需要代码解释,那么你可以使用GEE提供的交互式界面来制作Landsat系列影像的动画展示。下面是一个简单的步骤指南:1. 登录你的Google Earth Engine账号并进入GEE网站(https://earthengine.google.com/)。2. 在左上角的搜索栏中搜索"Landsat",然后选择你想要使用的Landsat影像数据集。3. 在地图视图中选择你感兴趣的地区和时间范围。4. 点击左侧菜单栏中的"动画"选项。原创 2024-10-08 12:30:00 · 324 阅读 · 0 评论 -
GEE问题: 离校后学校edu账户无法使用,如何导出我们所有的脚本
地球引擎脚本存储在由 Google 托管的 Git 资源库中。您可以访问浏览您可以访问的所有资源库,或访问浏览您拥有的资源库。访问以上链接,然后sign in,选择自己的邮箱登录,即可查看我们所有的代码:由于可以使用 Git 访问 Earth Engine 资源库,因此您可以轻松地从 Earth Engine 下载资源库,在代码编辑器之外管理和编辑脚本,然后再将脚本推送回 Earth Engine。原创 2024-09-30 14:00:00 · 265 阅读 · 0 评论 -
GEE 案例:一种在不受云层影响并利用合成口径雷达(SAR)数据的情况下监测植被的方法(双极化SAR植被指数)
DPSVI开发了一种在不受云层影响并利用合成口径雷达(SAR)数据的情况下监测植被的方法(双极化SAR植被指数),基于Sentinel-1任务数据。然而,DPSVI在植被茂密地区的性能和植被类别的变化尚不清楚。因此,本文旨在研究DPSVI在巴西大西洋森林生物群植被监测中的性能,并提出修改建议,以提高其监测植被和调查季节和空间对拟议指数(DPSVIm)性能影响的能力。原创 2024-09-25 15:00:00 · 763 阅读 · 0 评论 -
GEE AI:利用 LLMs 来协助地理空间分析中的规划和代码生成,加快数据处理流程
我们谷歌研究院科学人工智能部门的使命是实现科学突破和发现,造福人类并从根本上加快科学进步。我们的一个重点领域是通过生成式人工智能和大型语言模型(LLMs)的力量,增强地理空间分析师和科学家的能力。我们的目标是利用 LLMs 来协助地理空间分析中的规划和代码生成,从而大大加快分析师的工作流程。地理空间工作流程自动化的一个重要部分是根据特定的地理空间查询确定哪些数据集最相关。因此,我们最初的重点是建立一个数据集搜索代理,帮助用户找到最适合其分析需求的数据集。原创 2024-09-23 15:30:00 · 204 阅读 · 0 评论 -
Google Earth Engine——展示和加载并下载LST地表温度(获取地表温度最大值最小值)
本代码是利用landsat 8 数据中的ST10波段来进行温度的提取和计算,这里的主要过程就是加载研究区,影像预处理,温度值的转化以及温度计算和影像下载等几个过程。原创 2024-09-11 15:00:00 · 903 阅读 · 0 评论 -
GEE:Sentinel-1数据进行多孔斑点过滤器数据预处理
多孔斑点过滤器是对Sentinel-1 SAR(合成孔径雷达)数据进行预处理的一种方法,其目的是去除图像中的斑点噪声,并提高图像质量。多孔斑点过滤器主要涉及以下几个步骤:1. 数据读取:从Sentinel-1 SAR数据中读取需要处理的图像。2. 雷达干涉处理:如果使用的是多幅SAR图像,需要进行雷达干涉处理,以获取干扰项(如地形等)的相位信息。3. 相位滤波:利用低通滤波器对相位图像进行滤波处理,以去除高频成分。常用的滤波方法包括均值滤波、中值滤波等。原创 2024-09-01 17:00:00 · 305 阅读 · 0 评论 -
Google Earth Engine:如何用道路和医院信息计算不同区域到医院的成本距离
要计算不同区域到医院的成本距离,你可以使用道路和医院信息来进行计算。以下是一个基本的步骤:1. 收集道路信息:收集有关不同区域之间的道路网络的信息。这可能包括道路的长度、类型(高速公路、城市街道等)以及其他相关的交通信息(交通拥堵、通行时间等)。2. 收集医院信息:收集医院的位置信息。这可以是医院的地理坐标(纬度和经度)或者具体地址。3. 根据道路信息计算路径:使用收集到的道路信息,计算不同区域到医院的最短路径。这可以使用一些路径规划算法,如Dijkstra算法、A*算法等。原创 2024-08-18 21:30:00 · 119 阅读 · 0 评论 -
Google Earth Engine——利用Sentinel-1数据(db值)进行长时序均值加载
要对Sentinel-1数据进行长时序均值加载,可以使用一些数据处理工具和方法。以下是一种基本的方法:1. 获取Sentinel-1数据:从ESA的Sentinel数据存档中下载所需的Sentinel-1数据。可以使用ESA的Copernicus Open Access Hub或其他数据提供商的数据访问工具。2. 数据预处理:将下载的Sentinel-1数据进行预处理,包括去除噪声、校正等。可以使用Sentinel-1的预处理工具,如Sentinel-1 Toolbox(SAR软件包)或其他开源工具。原创 2024-08-20 19:00:00 · 265 阅读 · 0 评论 -
Google Earth Engine重大更新:没有项目(projection)的脚本将被限制访问
starting。原创 2024-07-23 17:25:00 · 1477 阅读 · 0 评论 -
Google Earth Engine:ASTER数据将辐射率转换为反射率的的代码
高级星载热发射和反射辐射计(ASTER)是一种多光谱成像仪,于1999年12月在NASA的Terra航天器上发射。ASTER可以收集从可见光到热红外的14个光谱带的数据。每个场景覆盖60 x 60公里的面积。这些场景由USGS制作,包含校准的传感器辐射率、正射纠正和地形纠正。并非每个场景都收集了所有14支乐队。名为ORIGINAL_BANDS_PRESENT的资产属性包含每个场景中存在的乐队列表。为了将传感器上的数字(DN)转换为辐射率,元数据中提供了单位转换系数。原创 2024-07-28 19:00:00 · 186 阅读 · 0 评论 -
Google Earth Engine:使用MODIS(MYD13Q1.061)数据进行2002-至今北京市逐年最大值合成的NDVI和EVI数据下载
MYD13Q1 V6.1 产品按像素提供植被指数 (VI) 值。主要有两个植被层。第一个是归一化植被指数(NDVI),它是现有的美国国家海洋和大气管理局-高级甚高分辨率辐射计(NOAA-AVHRR)得出的 NDVI 的连续性指数。第二个植被层是增强植被指数(EVI),它能最大限度地减少冠层背景变化,并保持对茂密植被条件的敏感性。增强植被指数还使用蓝色波段去除烟雾和亚像素薄云造成的残余大气污染。原创 2024-07-20 16:00:00 · 561 阅读 · 0 评论 -
Google Earth Engine(GEE)——用填充后的Landsat 7影像进行LST地表温度计算(C值转化为K值)更新(Landsat C02数据集)
这里我们发现随着GEE的计算能力的限制,算力不足,我们需要进行分布式运算,也就是将结果保存再assets中 ,然后通过require中引入之后再加载到GEE中进行计算。有时候GEE可以在之前的基础上可以累积算力,然后进行计算,这里我们可以二次运行就可以成果加载了。在图层展示中,我们需要设定一些图层最大值和最小值。原创 2024-07-04 17:08:55 · 311 阅读 · 0 评论 -
地球地图:快速进行先进土地监测和气候评估的新工具Earth Map
地球地图(https://earthmap.org/)是联合国粮食及农业组织开发的一款创新型免费应用程序,它是在联合国粮食及农业组织与谷歌合作框架内设计的,有助于土地和气候数据的可视化、处理和分析。借助谷歌地球引擎(https://earthengine.google.com/)的强大功能和点选式图形用户界面,地球地图可向任何用户提供 PB 级的多时空、多尺度、多参数和准实时卫星图像和地理空间数据集。此外,该系统还具有更多地球尺度的分析能力,可以轻松检测、量化和可视化地球表面的全球和局部变化及趋势。原创 2024-06-27 10:00:00 · 221 阅读 · 0 评论 -
GEE——利用Sentinel-5p 二氧化硫SO2数据如何进行单位转化(mol/m2 、 µg/m3)
mol/m^2是摩尔每平方米的单位,通常用于测量气体或溶液中某种物质的摩尔浓度。摩尔浓度是指单位体积(或体积分数)中所含物质的摩尔数量。µg/m^3是微克每立方米的单位,用于测量空气中或其他气体混合物中某种物质的质量浓度。微克是质量的单位,相当于百万分之一克。每立方米表示在1立方米的空间内所测量到的物质质量。这两个单位通常用于环境科学、大气科学、化学等领域中对大气污染物、水中溶解物质等进行测量和分析。原创 2024-06-22 19:00:00 · 400 阅读 · 0 评论 -
GEE:Landsat C01和C02数据集进行LST(Land Surface Temperature)地表温度分析
Landsat C02数据集虽然具有更加高质量的数据集,但是因为影像数量特别是在去云后会产生空洞,建议通过插值方式进行弥补或者进行研究区时间的放宽来实现。Google Earth Engine(GEE)——利用插值方法解决影像去云后的空缺/填充/弥补方法详细讲解(拉萨区域为例)_gee去云后空值怎么补-CSDN博客。原创 2024-06-16 18:30:00 · 778 阅读 · 0 评论 -
GEE(六边形制作)——实现研究去边界蜂窝状(六边形)矢量的转换
在GEE中实现研究区边界蜂窝状矢量的转换,这里我们首先获取研究区边界,然后进行边界坐标点进行获取,然后根据六边形坐标点计算公式,然后遍历研究区即可。在Google Earth Engine(GEE)中,可以使用以下步骤来制作去边界的六边形矢量:1. 首先,选择一个区域或图像,在该区域或图像上创建一个六边形网格。2. 使用六边形网格创建一个六边形矢量图层。- 首先,使用六边形的中心点坐标和边长来计算六边形的顶点坐标,可以参考前面给出的坐标计算公式。原创 2024-06-19 08:30:00 · 324 阅读 · 0 评论 -
GEE数据融合——Landsat (collection 2,level 2 )4、5、7、8、9长时间序列影像数据融合和视频导出分析
长时间序列影像数据融合是指将Landsat影像数据集合2级2(Level 2)中的4、5、7、8和9这五个卫星的数据进行融合。具体来说,这包括将同一地点的多个卫星影像数据进行处理和整合,以产生一个单一的、具有更高质量的影像产品。在长时间序列影像数据融合中,首先需要对不同卫星的影像数据进行校正,以消除不同卫星之间的光谱差异、辐射度问题和几何纠正误差等。然后,通过使用融合算法,将多个卫星的影像数据进行组合,以生成一张全新的、高质量的合成影像。原创 2024-06-14 16:00:00 · 1363 阅读 · 0 评论 -
GEE——利用GEE在线计算Landsat 4、5、7、8和9的数据融合后的长时序LST地表温度、蒸散发、FVC和NDVI的计算(Landsat collection 2)
LST(Land Surface Temperature,地表温度)是指地表的实际温度,是地表能量平衡的结果。通过遥感技术可以获取地表的温度分布情况,LST的高低可以反映地表的热环境状态,对于气候变化、城市热岛效应等研究具有重要意义。蒸散发(Evapotranspiration,ET)是指地表水分被蒸发和植被蒸腾的总和,是地表水循环的重要组成部分。通过测量地表温度、植被指数等参数,可以估算蒸散发的强度和空间分布情况,为水资源管理和农业生产提供重要参考。原创 2024-06-13 10:30:00 · 1292 阅读 · 1 评论 -
Google Earth Engine——Landsat 4/5/7/8/9 +Sentinel-1数据融合分析(逐年数据融合导出)
Landsat和Sentinel-1是两种不同的遥感数据源,分别提供了不同的信息。Landsat是一种光学传感器,提供高分辨率的可见光和红外波段图像,适用于地表覆盖分类、土地利用变化监测等应用。Sentinel-1是一种合成孔径雷达(SAR)传感器,可以提供全天候、全天时、高分辨率的雷达图像,适用于地表形变监测、水体变化检测等应用。将Landsat和Sentinel-1的数据进行融合可以获得更全面、准确的地表信息。原创 2024-06-07 10:00:00 · 1400 阅读 · 0 评论 -
GEE深度学习——使用卷积神经网络(Convolutional Neural Network,CNN)进行土地分类(PyTorch模式)
""" 训练变量"""# 云存储桶中包含训练和测试数据集。# 训练参数""" 模型部署变量"""# 训练模型的输出桶。替换为可写的输出桶!# 模型部署的元数据现在,我们需要为模型指定一个处理程序。我们可以使用 Torchserve 的默认处理程序,也可以编写自定义处理程序。在这里,我们的模型会返回每个类别的概率,因此我们将编写一个自定义处理程序,在概率上调用 argmax,并将概率最高的类别值返回给地球引擎。原创 2024-05-25 10:30:00 · 1248 阅读 · 0 评论 -
GEE深度学习——地代码作物分类(Vertex AI 机器学习MLPINGTAI )
AutoML 能以最小的技术投入创建和训练模型。本示例演示了使用 Vertex AI Python SDK 训练和部署一个 AutoML 表格式模型,然后从 Earth Engine 连接到该模型,对国家农业图像计划 (NAIP) 航空图像中的作物类型进行分类。本教程的主要流程是为了将选好的训练数据,进行GCS的问格式转换,然后进行数据集的创建,作为新格式的训练数据集,使用create()函数进行创建,这里可以进行数据名称和数据源的确定。原创 2024-05-25 15:30:00 · 619 阅读 · 0 评论 -
Google Earth Engine(GEE)——为什么地球上任何两个点相同缓冲区面积不同(地球曲率)?以不同地面点缓冲区进行分析
为什么我们很多时候使用相同的矢量面积来进行统计的时候,发现结果不一样,这个前提是我们使用常量影像(也就是这景影像的任何区域的量都是一样的)。通过以上问题我们选择3个点做2000米的缓冲区来实现这个问题的解答,这个主要是通过同一经度下不同维度的对比,同时,也进行同一纬度不同经度的对比,坐标系使用WGS84。原创 2024-05-21 16:30:00 · 387 阅读 · 0 评论 -
GEE数据下载——1984-2022年指定区域的逐月地表水数据批量下载(JRC Monthly Water History, v1.4)
以前的数据是JRC/GSW1_3/MonthlyHistory版本为1.3,现在的数据是JRC/GSW1_4/MonthlyHistory 1.4版本,GEE在数据中进行了更新。所以我们使用新的数据进行下载。JRC Monthly Water Recurrence, v1.4同理也更新到1.4版本。原创 2024-05-11 17:54:32 · 682 阅读 · 0 评论 -
Google Earth Engine——删除和复制指定ASSETS中的文件信息(JavaScript 和python版本)
如果你和我一样,有大量资产上传到 Earth Engine。随着上传的资产越来越多,管理这些数据变得相当繁琐。Earth Engine 提供了一个便捷的命令行工具,可以帮助进行资产管理。虽然命令行工具非常有用,但在涉及批量数据管理任务时,它就显得力不从心了。如果你想重新命名一个图像集合(ImageCollection)怎么办?您需要手动将每个子图像移动到新的集合中。如果要删除匹配特定关键字的资产,则需要编写自定义 shell 脚本。如果你的资产配额不足,想要删除大型资产,但没有直接的方法来列出大型资产。原创 2024-05-09 08:30:00 · 651 阅读 · 0 评论 -
Google earth engine——Landsat 7/8 co2数据之间计算NDVI之间的差异是多少
Landsat 7和Landsat 8是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合运营的一对卫星。它们是Landsat卫星系列的最新成员,旨在提供高分辨率,全球范围内的地球观测数据。这两颗卫星的数据在地理信息系统(GIS),环境监测,土地利用规划,农业和自然资源管理等领域具有广泛应用。Landsat 7卫星于1999年4月15日发射升空,它搭载的传感器是能够捕捉可见光和红外线波段的白天云区域遥感传感器(ETM +)。原创 2024-05-06 11:30:00 · 849 阅读 · 0 评论