# matplotlib inline
import random
import torch
import matplotlib
import matplotlib.pyplot as plt
import numpy
def synthetic_data(w, b, num_examples):
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
ture_w = torch.tensor([2, -3.4])
ture_b = 4.2
features, lables = synthetic_data(ture_w, ture_b, 1000)
# print('features:', features[0], '\nlable:', lables[0])
'''
fig = plt.figure()
plt.scatter(features[:, 1].detach(), lables.detach(), 1)
plt.show()
'''
def data_iter(batch_size, features, lables):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(
indices[i: min(i+batch_size, num_examples)])
yield features[batch_indices], lables[batch_indices]
batch_size = 10
'''
for X, y in data_iter(batch_size, features, lables):
print(X, '\n')
break
'''
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
def linreg(X, w, b):
return torch.matmul(X, w) + b
def squared_loss(y_hat, y):
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
def sgd(params, lr, batch_size):
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, lables):
l = loss(net(X, w, b), y)
l = loss(net(X, w, b), y)
l.sum().backward()
sgd([w, b], lr, batch_size)
with torch.no_grad():
train_l = loss(net(features, w, b), lables)
# train_l = squared_loss(linreg(features, w, b), lables)
print(f'epoch{epoch + 1}, loss{float(train_l.mean()):f}')
print(f'w的估计误差: {ture_w - w.reshape(ture_w.shape)}')
print(f'b的估计误差: {ture_b - b}')
Linear Regression
最新推荐文章于 2024-11-03 20:27:08 发布