pipeline与make_pipeline

pipeline与make_pipeline唯一的区别就是pipeline需要为转换器和评估器起名字,而make_pipeline自动为转换器和评估器生成名字

可以看一下面的例子

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
clf1 = Pipeline(
	[("scale", StadardScaler()),
	 ("svc", SVC(gamma=auto))
	]
)
clf1.set_params(svc__C = 1.0)

clf2 = make_pipeline(StandardScale(),SVC)
clf2.setparams(svc__C = 1.0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值