import tensorflow as tf
tf.test.is_gpu_available()
import tensorflow as tf
tf.test.is_gpu_available(
cuda_only=False,
min_cuda_compute_capability=None
)
- 最新版本
import tensorflow as tf
tf.config.list_physical_devices('GPU')
但是有些时候,就算上述代码运行没问题,还是不能够使用gpu的(因为cuda版本、gpu算力不兼容等原因),所以需要简单地使用一下gpu试试看:
- tensorflow2.X(下述代码参考自tensorflow2.0官方教程)
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test, verbose=2)
正常来说这段demo用gpu的话十几秒就能训练好,证明是可以使用gpu进行推理和反传的。
- tensorflow1.X(下述代码参考自博客:使用前向传播和反向传播的神经网络代码)
import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize((cross_entropy)) #反向传播算法
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1+x2 <1)] for (x1, x2) in X]
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run(w1))
print(sess.run(w2))
STEPS = 5000
for i in range(STEPS):
start = (i * batch_size) % dataset_size
end = min(start + batch_size, dataset_size)
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
print("After %d training steps(s), cross entropy on all data is %g" % (i, total_cross_entropy))
print(sess.run(w1))
print(sess.run(w2))