查看tensorflow是否为GPU版本,并检查gpu是否可用

import tensorflow as tf
tf.test.is_gpu_available()
import tensorflow as tf
tf.test.is_gpu_available(
    cuda_only=False,
    min_cuda_compute_capability=None
)
  1. 最新版本
import tensorflow as tf
tf.config.list_physical_devices('GPU')

但是有些时候,就算上述代码运行没问题,还是不能够使用gpu的(因为cuda版本、gpu算力不兼容等原因),所以需要简单地使用一下gpu试试看:

  1. tensorflow2.X(下述代码参考自tensorflow2.0官方教程)
import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])


model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)

在这里插入图片描述
正常来说这段demo用gpu的话十几秒就能训练好,证明是可以使用gpu进行推理和反传的。

  1. tensorflow1.X(下述代码参考自博客:使用前向传播和反向传播的神经网络代码)
import tensorflow as tf
from numpy.random import RandomState

batch_size = 8 
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) 
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) 


x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')


a = tf.matmul(x, w1) 
y = tf.matmul(a, w2)

cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))

train_step = tf.train.AdamOptimizer(0.001).minimize((cross_entropy)) #反向传播算法

rdm = RandomState(1) 
dataset_size = 128
X = rdm.rand(dataset_size, 2) 
Y = [[int(x1+x2 <1)] for (x1, x2) in X]  

with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    print(sess.run(w1))
    print(sess.run(w2))

    STEPS = 5000
    for i in range(STEPS):
        start = (i * batch_size) % dataset_size  
        end = min(start + batch_size, dataset_size)  
        sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
        if i % 1000 == 0:
            total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
            print("After %d training steps(s), cross entropy on all data is %g" % (i, total_cross_entropy))

    print(sess.run(w1))
    print(sess.run(w2))
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值