蓝桥杯 历届真题 题解目录
试题 D: 数的分解
本题总分:10 分
【问题描述】
把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包 含数字 2 和 4,一共有多少种不同的分解方法?
注意交换 3 个整数的顺序被视为同一种方法,例如 1000+1001+18 和 1001+1000+18 被视为同一种。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案:40785
分析:
典型的枚举,三个数的和,只需要枚举两层for循环,第三个数用n-i-j即可。
剪枝条件就是每个数不能包含2和4,以及三个数不能重复。并且1+2+3和3+2+1是同一种情况,所以直接排序
i
<
j
<
k
i<j<k
i<j<k,即可避免此情况。
所以就有:
i
<
2019
3
,
j
<
2019
−
i
2
,
k
=
2019
−
i
−
j
;
i<\frac{2019}{3},j<\frac{2019-i}{2},k=2019-i-j;
i<32019,j<22019−i,k=2019−i−j;
以上应该就是最大化的剪枝了,代码如下:
#include <iostream>
using namespace std;
int ans = 0;
bool check(int num)
{
while (num > 0)
{
if (num % 10 == 2 || num % 10 == 4) return false;
num /= 10;
}
return true;
}
int main()
{
freopen("text.ini", "w", stdout); //将输出结果存入text.ini,会自己创建,运行结束后打开文本即可
for (int i = 1; i <= 2019 / 3; i++)
{
if (!check(i)) continue;
for (int j = i + 1; j <= (2019 - i) / 2; j++)
{
if (j >= 2019 - i - j || !check(j) || !check(2019 - i - j)) continue;
//这里我当时测试了一下输出结果,怕出意外。大家可以改成ans++,在结束前输出ans即可。
cout << ++ans << ": " << i << " + " << j << " + " << 2019 - i - j << endl;
}
}
cout << "over" << endl;
while (1);
return 0;
}