第十届 蓝桥杯软件类 C或C++程序设计 本科B组 省赛 第4题 数的分解

蓝桥杯 历届真题 题解目录

试题 D: 数的分解

本题总分:10 分
 
【问题描述】
  把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包 含数字 2 和 4,一共有多少种不同的分解方法?
  注意交换 3 个整数的顺序被视为同一种方法,例如 1000+1001+18 和 1001+1000+18 被视为同一种。
 
【答案提交】
  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

答案:40785
 
分析:
  典型的枚举,三个数的和,只需要枚举两层for循环,第三个数用n-i-j即可。
  剪枝条件就是每个数不能包含2和4,以及三个数不能重复。并且1+2+3和3+2+1是同一种情况,所以直接排序 i &lt; j &lt; k i&lt;j&lt;k i<j<k,即可避免此情况。
  所以就有: i &lt; 2019 3 , j &lt; 2019 − i 2 , k = 2019 − i − j ; i&lt;\frac{2019}{3},j&lt;\frac{2019-i}{2},k=2019-i-j; i<32019,j<22019ik=2019ij;
  以上应该就是最大化的剪枝了,代码如下:

#include <iostream>
using namespace std;

int ans = 0;

bool check(int num)
{
	while (num > 0)
	{
		if (num % 10 == 2 || num % 10 == 4) return false;
		num /= 10;
	}
	return true;
}

int main()
{
	freopen("text.ini", "w", stdout);	//将输出结果存入text.ini,会自己创建,运行结束后打开文本即可

	for (int i = 1; i <= 2019 / 3; i++)
	{
		if (!check(i)) continue;
		for (int j = i + 1; j <= (2019 - i) / 2; j++)
		{
			if (j >= 2019 - i - j || !check(j) || !check(2019 - i - j)) continue;
			//这里我当时测试了一下输出结果,怕出意外。大家可以改成ans++,在结束前输出ans即可。
			cout << ++ans << ": " << i << " + " << j << " + " << 2019 - i - j << endl;
		}
	}

	cout << "over" << endl;
	while (1);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值