python的特性,切片,迭代,列表推导式,生成器,迭代器
1切片
python常用 处理字符串,列表,元组,字典,的方法;
字符串:不用strip,消除空格键
while ' ' == s[0]:
...: s= s[1:]
...: if 0==len(s):
...: break
...: while ' ' ==s[-1]:
...: s= s[:-1]
...: if 0==len(s):
...: break
...:
列表:
In [28]: l[:89:-1]
Out[28]: [99, 98, 97, 96, 95, 94, 93, 92, 91]
元组:
In [31]: (1,2,3,4,5,6)[:3]
Out[31]: (1, 2, 3)
2迭代
如何判读一个是不是可以迭代对象?
isinstance('abc', Iterable) # str是否可迭代
True
isinstance(123, Iterable) # 整数是否可迭代
False
for key in d
for value in d.values()
for k,v in d.items()
如何对dict数据类型进行迭代?
for k, v in d.items():
...: print(k,v)
...:
...:
caomei 1
boluo 2
pear 3
for value in d.values():
...: print(value)
...:
1
2
3
for i,value in enumerate(['a','b','c']):
...: print(i,value)
...:
0 a
1 b
2 c
3列表推导式:
想要生成[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
list(range(1,11))
想要生成:[1x1, 2x2, 3x3, …, 10x10]
L=[]
for x in range(1, 11):
... L.append(x * x)
也可以这样
[x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
还可以在for前面加上 x*x
[x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
生成全排列:
[m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
列出当前目录下的所有文件和目录名,可以通过一行代码实现:
import os # 导入os模块,模块的概念后面讲到
[d for d in os.listdir('.')] # os.listdir可以列出文件和目录
列表生成式可以使用两个变量生成list:
d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
列表生成器: 可以把两个变量生成list:
d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
把最后一个list所有字符串变成小写:
L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']`
使用if else 限定
[x if x % 2 == 0 else -x for x in range(1, 11)]
[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]
4生成器:
为什么要引入生成器的概念?
当列表有1万个数据时候,所占内存会非常大,但很多数据是没有必要使用,或者从未使用过,此时我们引入生成器;
使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行
因此生成器有以上3个特点:
1 生成器内存占用极少:list一旦被创建,内存就存放所有元素,而生成器g元素将随着next()函数调用实时生成,直到没有元素生成,最后抛出StopIerration
2生成器代码简洁
3生成器运行方式不同;遇到yield就返回;
生成器分为:
生成器表达式;g=(num*num for num in range (1,6))next(g)
生成器函数:函数里面把print替换成为yield;记住上次返回时,在函数体中的位置;
生成器不但记住了数据状态,还记住了程序执行位置;
L=[X*X for X inrange(10)]
g= (x*x for x i range(10))
L 和g区别式【】 () L是一个list 而g式一个generator;
next()
for n in g:
... print(n)
...
函数: generator函数返回generator对象;
g = fib(6)
>>> g
<generator object fib at 0x1022ef948>
我们已斐波那契数列介绍以下生成器:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
把print改为yield
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
f=fibonacci(10) #f是一个迭代器,有生成器返回
while True:
try:
print(next(f),end=" " )
except StopIteration:
sys.exit()
5迭代器:
一个生成器,话可以被next()函数调用并且,不断生成下一个值的成为迭代器;
或者说可以for 循环对象有以下的类型;
1 集合数据类型,字符串,列表,元组,字典,集合
2生成器
for 循环的对象 成为 可以迭代对象,ininstance()判断对象是否是迭代器;
不是迭代器的可以迭代对象,可以使用iter()函数变成迭代器;
可以使用for循环遍历迭代器:
list = [1,2,3,4]
for num in iter(list):
print(num)
也可以使用next()函数遍历迭代器:
import sys
list=[1,2,3,4]
iter=iter(list)
while 1:
try:
print(next(liter))
except StopIteration:
sys.exit()