log-sum-exp 的计算溢出解决

文章介绍了LogSumExp的计算中可能出现的溢出问题,并提出通过SoftMax函数及其对数形式来解决。通过变形,将LogSumExp转换为避免溢出的形式,其中c取最大值,从而确保数值稳定性。最后展示了SoftMax与LogSumExp的关系,为数值计算提供了稳定的方法。
摘要由CSDN通过智能技术生成

1 原始的定义
Log ⁡ Sum ⁡ Exp ⁡ ( x 1 … x n ) = log ⁡ ( ∑ i = 1 n e x i ) \operatorname{Log} \operatorname{Sum} \operatorname{Exp}\left(x_{1} \ldots x_{n}\right)=\log \left(\sum_{i=1}^{n} e^{x_{i}}\right) LogSumExp(x1xn)=log(i=1nexi)
2 SoftMax
e x j ∑ i = 1 n e x i \frac{e^{x_{j}}}{\sum_{i=1}^{n} e^{x_{i}}} i=1nexiexj
3 对SoftMax取对数
log ⁡ ( e x j ∑ i = 1 n e x i ) \log \left(\frac{e^{x_{j}}}{\sum_{i=1}^{n} e^{x_{i}}}\right) log(i=1nexi

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值