通往真理的最短路径 - 【复数】科普/详解

在实数域中,连接两个真理的最短的路径是通过复数域 ----雅克·阿达马

复数认知阶段

阶段一

高中数学定义
i = − 1 i=\sqrt{-1} i=1
再定义复数
a + b i ( a , b ∈ R ) a+b i \quad(a, b \in \mathbb{R}) a+bi(a,bR)
这样一元二次方程就总是有解了!
a x 2 + b x + c = 0 ( a ≠ 0 ) a x^{2}+b x+c=0 \quad(a \neq 0) ax2+bx+c=0(a̸=0)
x = − b ± b 2 − 4 a c 2 a x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} x=2ab±b24ac
然后就可以出很多乱七八糟的考题了!

阶段二

有了复数之后,以下原本在实数上不可以进行的操作都可以进行

  • 任意开根号
    − 4 = 2 i \sqrt{-4}=2 i 4 =2i
  • 对负数做对数运算
    ln ⁡ ( − 5 ) = ln ⁡ ( 5 e i π ) = ln ⁡ 5 + ln ⁡ e i π = ln ⁡ 5 + i π \ln (-5)=\ln \left(5 e^{i \pi}\right)=\ln 5+\ln e^{i \pi}=\ln 5+i \pi ln(5)=ln(5eiπ)=ln5+lneiπ=ln5+iπ

但这两种还是不可以

  • 除以0
  • log ⁡ ( 0 ) \log (0) log(0)

扩展数系

问:扩展数系的时候,为什么不能发明一种数系,兼容“除以0”这个操作呢?
答:因为没有办法自洽,兼容“除以0”之后会得到悖论。所以“兼容除以0”这个目标就是错误的。就像“永动机”这个目标一样。
0 = 0 ⟹ 2 ⋅ 0 = 1 ⋅ 0 ⟹ 2 ⋅ 0 0 = 1 ⋅ 0 0 ⟹ 2 = 1 0=0 \Longrightarrow 2 \cdot 0=1 \cdot 0 \Longrightarrow \frac{2 \cdot 0}{0}=\frac{1 \cdot 0}{0} \Longrightarrow 2=1 0=020=10020=0102=1

问:扩展数系的时候,为什么可以轻松得到 i = − 1 i=\sqrt{-1} i=1
答:因为复数这个东西本来就是合理的,等待人们发现而已。(有一种轮回的感觉。。)

复数是二维的数

理解多维空间的一个小视频 - YouTube

假设有一个生活在二维空间中的纸片人:

突然发现有一个黑点在草地上忽大忽小的闪烁,纸片人完全不知道怎么去解释:


如果切换到三维视角去的话,问题就很简单了,原来是一个三维的球体穿过二维平面:

实数是一维的数,既生活在一维的实数轴上,又困囿其上:

而复数生活在二维复平面,拥有更大的自由度:

复数的历史

纸片人卡尔达诺

意大利数学家,吉罗拉莫·卡尔达诺(1501-1576),在它的著作《大术》中(这本书首次记载了一元三次方程的完整解法)提到这个一个问题,能否把10分成两部分,使它们的乘积为40?

他给出一个答案,令:
a = 5 + − 15 b = 5 − − 15 a=5+\sqrt{-15}\quad b=5-\sqrt{-15} a=5+15 b=515
这样就满足题目的要求:
a + b = 10 a ⋅ b = 40 a+b=10\quad a\cdot b=40 a+b=10ab=40
不过他自己也认为这不过就是一个数学游戏,虽然出现了虚数,但是“既不可捉摸又没有什么用处”。

此时的卡尔达诺就好像之前的纸片人,虽然想到了虚数,触摸到了更高的维度,但是终究还是把它看成一种幻想。

之后的笛卡尔把 i = − 1 i=\sqrt{-1} i=1 称为虚数,也就是虚幻的、想像出来的数;莱布尼兹描述它为“介乎于存在与不存在之间的两栖数”。

确实,纸片人要跳出自己的维度去想问题是非常困难的。

邦贝利的思维飞跃
拉斐尔·邦贝利(1526-1572),文艺复兴时期欧洲著名的工程师,同时也是一个卓越的数学家,其出版于1572年的《代数学》一书讨论了负数的平方根(虚数):

正是这本书产生了一个思维飞跃。

  • 标准的一元二次方程
    a x 2 + b x + c = 0 ( a ≠ 0 ) a x^{2}+b x+c=0 \quad(a \neq 0) ax2+bx+c=0(a̸=0)
    b 2 − 4 a c &lt; 0 b^{2}-4ac &lt; 0 b24ac<0时曲线与x轴不相交,应该无解。

  • 一元三次方程
    x 3 − 3 p x − 2 q = 0 x^{3}-3 p x-2 q=0 x33px2q=0
    通解是
    x = q + q 2 − p 3 8 + q − q 2 − p 3 3 x=\sqrt[8]{q+\sqrt{q^{2}-p^{3}}}+\sqrt[3]{q-\sqrt{q^{2}-p^{3}}} x=8q+q2p3 +3qq2p3
    假设方程
    x 3 − 15 x − 4 = 0 x^{3}-15 x-4=0 x315x4=0
    图像是

套用通解得到
x = 2 + 2 2 − 5 3 3 + 2 − 2 2 − 5 3 3 = 2 + 11 i 3 + 2 − 11 i 3 x=\sqrt[3]{2+\sqrt{2^{2}-5^{3}}}+\sqrt[3]{2-\sqrt{2^{2}-5^{3}}}=\sqrt[3]{2+11 i}+\sqrt[3]{2-11 i} x=32+2253 +322253 =32+11i +3211i
邦贝利指出:从几何上看是有解的,但是必须通过虚数来求解!
邦贝利大胆地定义了复数的乘法(就是多项式乘法的合理延伸):
( a + b i ) ( c + d i ) = a c + ( a d + b c ) i + b d i 2 (a+bi)(c+di)=ac+(ad+bc)i+bdi^2 (a+bi)(c+di)=ac+(ad+bc)i+bdi2

最终通过复数以及复数乘法,邦贝利解出了此方程的三个实数解。

这是一个巨大的思维飞跃,就好像刚才的纸片小人,困惑于“为什么有一个黑点在草地上忽大忽小的闪烁”?最终发现,需要通过更高纬度才能真正解决这个问题。邦贝利通过更高维度的复平面,解决了低维度的实数问题,真正的把复数带入了人们的视野。所以他被认为是复数的发现者。

更高维的数

自然会有这么一个问题,是否有更高维度的数?答案是有的,比如四元数。

威廉·哈密顿爵士(1805-1865)发现了四元数:
a + b i + c j + d k a+bi+cj+dk a+bi+cj+dk

其中i、j、k就是对虚数维度的扩展。为此还成立了四元数推广委员会,提议学校像实数一样教授四元数。
四元数刚开始的时候引起了很大的争议,计算很复杂,但是用处不明显。用处不明显的原因或许是,当时面临的问题还不够复杂,还用不到比复数还高的维度。到了现代,终于在电脑动画中、量子物理中找到了四元数更多的应用,只是这些应用对普通人距离太远了。

文章来源
https://www.matongxue.com/madocs/1709/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值