这题要用到判断素数的算法
1.常用版本
/**
* 判断是否为素数/质数的常规方法
* 判断n是否为素数,根据定义直接判断从2到n-1是否存在n的约数即可
* @param num
* @return
*/
bool isPrime(int n) {
for(int i=2; i<n; i++) {
if(n%i == 0) { //让n和从2到n递增的i一个个求余 如果有这个i让余数为0,说明能整除,即不是素数
return false;
}
}
return true;
}
2.优化常用版
bool isPrime(int n){
if( n <= 2 ){ //0,1,2都是素数
return false;
}
for(int i = 3; i<sqrt(n); i++){
if(n % i == 0){
return false;
}
}
return true;
}
/* 为什么小于sqrt(n)呢,因为一个数如果不是素数,那么他一定可以表示成两个数相乘(除了1和他本身)
这两个数必然有一个小于等于n的平方根,只要找到那个小于或等于的那个就行了,这样有助于减少重复。
比如36 开方为6,也可以是4*9,找到这个4就行了 */
``