引射器结构
引射器的结构如下,可以通过高速的工作气
v
1
v_1
v1将被引射的气体
v
′
v'
v′抽吸带动,实现泵送
被引射气体流速的计算
扩张段的计算
列写不可压流体的质量守恒方程,有
v
2
=
A
3
A
2
v
3
v_2=\frac{A_3}{A_2}v_3
v2=A2A3v3
列写不可压流体的伯努利方程,有
p
2
=
p
3
+
ρ
v
3
2
2
−
ρ
v
2
2
2
p_2=p_3+\frac{\rho v_{3}^{2}}{2}-\frac{\rho v_{2}^{2}}{2}
p2=p3+2ρv32−2ρv22
直筒段的计算
以直筒段气体为控制体积,考虑其动量守恒方程,有
ρ
v
2
2
A
2
−
(
ρ
v
1
2
A
1
+
ρ
v
′
2
(
A
2
−
A
1
)
)
=
p
1
A
1
+
p
1
(
A
2
−
A
1
)
−
p
2
A
2
\rho v_{2}^{2}A_2-\left( \rho v_{1}^{2}A_1+\rho v'^2\left( A_2-A_1 \right) \right) =p_1A_1+p_1\left( A_2-A_1 \right) -p_2A_2
ρv22A2−(ρv12A1+ρv′2(A2−A1))=p1A1+p1(A2−A1)−p2A2需要注意的是由于流速较低,式中忽略了壁面对气体的摩擦阻力,工作气喷嘴出口处的压力是均匀的,为
p
1
p_1
p1。
p
1
=
p
0
−
ρ
v
1
2
2
p_1=p_0-\rho \frac{v_{1}^{2}}{2}
p1=p0−ρ2v12需要注意的是,
p
0
p_0
p0是工作气的滞止压力。再考虑质量守恒方程,有
v
1
A
1
+
v
′
(
A
2
−
A
1
)
=
v
2
A
2
v_1A_1+v'\left( A_2-A_1 \right) =v_2A_2
v1A1+v′(A2−A1)=v2A2
联立求解
引入无量纲的面积比
ε
1
=
A
1
A
2
,
ε
3
=
A
3
A
2
\varepsilon _1=\frac{A_1}{A_2},\varepsilon _3=\frac{A_3}{A_2}
ε1=A2A1,ε3=A2A3
引入压力差
Δ
p
=
p
0
−
p
3
\Delta p=p_0-p_3
Δp=p0−p3联立扩张段质量守恒方程、扩张段伯努利方程、直筒段动量守恒方程和直筒段质量守恒方程,可以求解4个未知量
v
′
=
ε
3
2
2
Δ
p
(
(
ε
1
+
1
)
ε
3
2
+
ε
1
−
1
)
+
ρ
v
1
2
(
(
ε
1
−
1
)
ε
3
2
−
3
ε
1
+
1
)
(
ε
1
−
1
)
ε
3
2
ρ
+
ε
1
(
ε
3
2
+
1
)
v
1
(
ε
1
+
1
)
ε
3
2
+
ε
1
−
1
v'=\frac{{\varepsilon _3}^2\sqrt{\frac{2\Delta p\left( (\varepsilon _1+1){\varepsilon _3}^2+\varepsilon _1-1 \right) +\rho v_{1}^{2}\left( (\varepsilon _1-1){\varepsilon _3}^2-3\varepsilon _1+1 \right)}{(\varepsilon _1-1){\varepsilon _3}^2\rho}}+\varepsilon _1\left( {\varepsilon _3}^2+1 \right) v_{_1}}{(\varepsilon _1+1){\varepsilon _3}^2+\varepsilon _1-1}
v′=(ε1+1)ε32+ε1−1ε32(ε1−1)ε32ρ2Δp((ε1+1)ε32+ε1−1)+ρv12((ε1−1)ε32−3ε1+1)+ε1(ε32+1)v1
v
2
=
v
1
ε
1
+
v
′
(
1
−
ε
1
)
v_2=v_1\varepsilon _1+v'\left( 1-\varepsilon _1 \right)
v2=v1ε1+v′(1−ε1)
v
3
=
v
2
ε
3
v_3=\frac{v_2}{\varepsilon _3}
v3=ε3v2
p
2
=
p
3
+
ρ
v
3
2
2
−
ρ
v
2
2
2
p_2=p_3+\frac{\rho v_{3}^{2}}{2}-\frac{\rho v_{2}^{2}}{2}
p2=p3+2ρv32−2ρv22
绘图
下图实线是典型工况下 v ′ v' v′随 v 1 v_1 v1的变化曲线,由于未考虑从 p 3 p_3 p3到 p 1 p_1 p1的流动过程,故称之为内特性曲线。短虚线表示被引射气体流经环缝无压力损失条件下,根据 p 1 p_1 p1与 p 3 p_3 p3压力差直接计算得到的 v ′ v' v′,称为理想的外特性曲线。二者交点即为理想工作点。如果在此基础上考虑 p 3 p_3 p3到 p 1 p_1 p1流动过程中的压力损失,实际工作点应在理想工作点下方。
下图是
v
3
v_3
v3随
v
1
v_1
v1的变化曲线
下图是
p
1
−
p
3
p_1-p_3
p1−p3的变化曲线,当
p
1
−
p
3
<
0
p_1-p_3<0
p1−p3<0时引射器才可能正常工作。