PINN神经网络源代码解析(pyTorch)

参考文献

PINN(Physics-informed Neural Networks)的原理部分可参见https://maziarraissi.github.io/PINNs/

考虑Burgers方程,如下图所示,初始时刻u符合sin分布,随着时间推移在x=0处发生间断.
这是一个经典问题,可使用pytorch通过PINN实现对Burgers方程的求解。
在这里插入图片描述

源代码与注释

源代码共含有三个文件,来源于Github https://github.com/jayroxis/PINNs

在这里插入图片描述
network.py文件用于定义神经网络的结构
train.py文件用于训练神经网络
evaluate.py文件用于测试训练好的模型绘制结果图

建议使用Anaconda构建运行环境,需要安装pytorch和一些辅助包

1、network.py 文件

import torch
import torch.nn as nn
from collections import OrderedDict

# 定义神经网络的架构
class Network(nn.Module):
    # 构造函数
    def __init__(
        self,
        input_size, # 输入层神经元数
        hidden_size, # 隐藏层神经元数
        output_size, # 输出层神经元数
        depth, # 隐藏层数
        act=torch.nn.Tanh, # 输入层和隐藏层的激活函数
    ):
        super(Network, self).__init__()#调用父类的构造函数

        # 输入层
        layers = [('input', torch.nn.Linear(input_size, hidden_size))]
        layers.append(('input_activation', act()))

        # 隐藏层
        for i in range(depth):
            layers.append(
                ('hidden_%d' % i, torch.nn.Linear(hidden_size, hidden_size))
            )
            layers.append(('activation_%d' % i, act()))

        # 输出层
        layers.append(('output', torch.nn.Linear(hidden_size, output_size)))

        #将这些层组装为神经网络
        self.layers = torch.nn.Sequential(OrderedDict(layers))

    # 前向计算方法
    def forward(self, x):
        return self.layers(x)

2、train.py 文件

import math
import torch
import numpy as np
from network import Network

# 定义一个类,用于实现PINN(Physics-informed Neural Networks)
class PINN:
    # 构造函数
    def __init__(self):
        # 选择使用GPU还是CPU
        device = torch.device(
            "cuda") if torch.cuda.is_available() else torch.device("cpu")
        
        # 定义神经网络
        self.model = Network(
            input_size=2,  # 输入层神经元数
            hidden_size=16,  # 隐藏层神经元数
            output_size=1,  # 输出层神经元数
            depth=8,  # 隐藏层数
            act=torch.nn.Tanh  # 输入层和隐藏层的激活函数
        ).to(device)  # 将这个神经网络存储在GPU上(若GPU可用)

        self.h = 0.1  # 设置空间步长
        self.k = 0.1  # 设置时间步长
        x = torch.arange(-1, 1 + self.h, self.h)  # 在[-1,1]区间上均匀取值,记为x
        t = torch.arange(0, 1 + self.k, self.k)  # 在[0,1]区间上均匀取值,记为t

        # 将x和t组合,形成时间空间网格,记录在张量X_inside中
        self.X_inside = torch.stack(torch.meshgrid(x, t)).reshape(2, -1).T

        # 边界处的时空坐标
        bc1 = torch.stack(torch.meshgrid(x[0], t)).reshape(2, -1).T  # x=-1边界
        bc2 = torch.stack(torch.meshgrid(x[-1], t)).reshape(2, -1).T  # x=+1边界
        ic = torch.stack(torch.meshgrid(x, t[0])).reshape(2, -1).T  # t=0边界
        self.X_boundary = torch.cat([bc1, bc2, ic])  # 将所有边界处的时空坐标点整合为一个张量

        # 边界处的u值
        u_bc1 = torch.zeros(len(bc1))  # x=-1边界处采用第一类边界条件u=0
        u_bc2 = torch.zeros(len(bc2))  # x=+1边界处采用第一类边界条件u=0
        u_ic = -torch.sin(math.pi * ic[:, 0])  # t=0边界处采用第一类边界条件u=-sin(pi*x)
        self.U_boundary = torch.cat([u_bc1, u_bc2, u_ic])  # 将所有边界处的u值整合为一个张量
        self.U_boundary = self.U_boundary.unsqueeze(1)

        # 将数据拷贝到GPU
        self.X_inside = self.X_inside.to(device)
        self.X_boundary = self.X_boundary.to(device)
        self.U_boundary = self.U_boundary.to(device)
        self.X_inside.requires_grad = True  # 设置:需要计算对X的梯度

        # 设置准则函数为MSE,方便后续计算MSE
        self.criterion = torch.nn.MSELoss()

        # 定义迭代序号,记录调用了多少次loss
        self.iter = 1

        # 设置lbfgs优化器
        self.lbfgs = torch.optim.LBFGS(
            self.model.parameters(),
            lr=1.0,
            max_iter=50000,
            max_eval=50000,
            history_size=50,
            tolerance_grad=1e-7,
            tolerance_change=1.0 * np.finfo(float).eps,
            line_search_fn="strong_wolfe",
        )

        # 设置adam优化器
        self.adam = torch.optim.Adam(self.model.parameters())

    # 损失函数
    def loss_func(self):
        # 将导数清零
        self.adam.zero_grad()
        self.lbfgs.zero_grad()

        # 第一部分loss: 边界条件不吻合产生的loss
        U_pred_boundary = self.model(self.X_boundary)  # 使用当前模型计算u在边界处的预测值
        loss_boundary = self.criterion(
            U_pred_boundary, self.U_boundary)  # 计算边界处的MSE

        # 第二部分loss:内点非物理产生的loss
        U_inside = self.model(self.X_inside)  # 使用当前模型计算内点处的预测值

        # 使用自动求导方法得到U对X的导数
        du_dX = torch.autograd.grad(
            inputs=self.X_inside,
            outputs=U_inside,
            grad_outputs=torch.ones_like(U_inside),
            retain_graph=True,
            create_graph=True
        )[0]
        du_dx = du_dX[:, 0]  # 提取对第x的导数
        du_dt = du_dX[:, 1]  # 提取对第t的导数

        # 使用自动求导方法得到U对X的二阶导数
        du_dxx = torch.autograd.grad(
            inputs=self.X_inside,
            outputs=du_dX,
            grad_outputs=torch.ones_like(du_dX),
            retain_graph=True,
            create_graph=True
        )[0][:, 0]
        loss_equation = self.criterion(
            du_dt + U_inside.squeeze() * du_dx, 0.01 / math.pi * du_dxx)  # 计算物理方程的MSE

        # 最终的loss由两项组成
        loss = loss_equation + loss_boundary

        # loss反向传播,用于给优化器提供梯度信息
        loss.backward()

        # 每计算100次loss在控制台上输出消息
        if self.iter % 100 == 0:
            print(self.iter, loss.item())
        self.iter = self.iter + 1
        return loss

    # 训练
    def train(self):
        self.model.train()  # 设置模型为训练模式

        # 首先运行5000步Adam优化器
        print("采用Adam优化器")
        for i in range(5000):
            self.adam.step(self.loss_func)
        # 然后运行lbfgs优化器
        print("采用L-BFGS优化器")
        self.lbfgs.step(self.loss_func)

# 实例化PINN
pinn = PINN()

# 开始训练
pinn.train()

# 将模型保存到文件
torch.save(pinn.model, 'model.pth')

运行该文件后模型结果保存在model.pth文件中

3、evaluate.py 文件

import torch
import seaborn as sns
import matplotlib.pyplot as plt

# 选择GPU或CPU
device = torch.device(
    "cuda") if torch.cuda.is_available() else torch.device("cpu")

# 从文件加载已经训练完成的模型
model_loaded = torch.load('model.pth', map_location=device)
model_loaded.eval()  # 设置模型为evaluation状态

# 生成时空网格
h = 0.01
k = 0.01
x = torch.arange(-1, 1, h)
t = torch.arange(0, 1, k)
X = torch.stack(torch.meshgrid(x, t)).reshape(2, -1).T
X = X.to(device)

# 计算该时空网格对应的预测值
with torch.no_grad():
    U_pred = model_loaded(X).reshape(len(x), len(t)).cpu().numpy()

# 绘制计算结果
plt.figure(figsize=(5, 3), dpi=300)
xnumpy = x.numpy()
plt.plot(xnumpy, U_pred[:, 0], 'o', markersize=1)
plt.plot(xnumpy, U_pred[:, 20], 'o', markersize=1)
plt.plot(xnumpy, U_pred[:, 40], 'o', markersize=1)
plt.figure(figsize=(5, 3), dpi=300)
sns.heatmap(U_pred, cmap='jet')
plt.show()

运行该文件后,可绘制u场的结果
在这里插入图片描述

### 回答1: MATLAB PINN代码是指基于神经网络的偏微分方程求解代码。这种新型求解方法通过神经网络学习偏微分方程的解,进而求解未知的物理量。这种方法能够比传统的基于网格的求解方法更高效、更精确地求解偏微分方程,并且能够适应复杂的多物理场耦合问题。 在MATLAB PINN代码中,主要包括以下几个部分: 1. 数据预处理:对要求解的偏微分方程进行网格化,对数据进行预处理、归一化等操作 2. 神经网络定义:通过搭建神经网络,进行训练与求解偏微分方程。在网络中,可以加入各种不同的激活函数、损失函数等,以实现不同的物理场求解。 3. 模型训练与求解:对搭建好的神经网络进行训练,利用梯度下降等算法不断更新网络权重,使其逐渐逼近真实的解。在模型训练完成后,就可以进行偏微分方程的求解。 4. 结果可视化:将求解结果可视化,通过二维或三维图像来展现不同物理场的解的情况。 总结来说,MATLAB PINN代码作为一种新型的偏微分方程求解方法,具有速度快、准确度高、适用于复杂多物理场问题等优点,是当前求解偏微分方程领域的研究热点。 ### 回答2: MATLAB Pinn(Physically-Informed Neural Networks)代码是用于神经网络建模的一种工具,它可以用于物理系统建模、动力学建模和流体力学等领域。它允许用户将微分方程融入神经网络模型中,并且可以通过数据拟合来验证和优化模型的准确性。 Pinn代码有以下几个主要部分: 1.输入数据处理部分:这个部分主要用于数据预处理、分块和归一化。用户需要将数据处理成合适的格式,以供网络训练使用。 2.神经网络结构部分:这个部分定义了神经网络的结构和参数。用户需要选择合适的网络架构、层数、单元数和激活函数等参数,并定义优化器和损失函数。 3.微分方程部分:这个部分包含微分方程的定义和参数。用户需要定义微分方程的形式和参数,并将其嵌入到神经网络模型中。 4.模型训练部分:这个部分使用准备好的数据、神经网络结构和微分方程定义来进行训练。用户需要选择训练数据和测试数据,并设置训练批次、学习率和训练周期等参数。 5.模型验证部分:这个部分将训练好的模型用于数据验证和预测。用户可以用测试数据验证模型的准确度,并使用模型进行预测。 总的来说,Pinn代码是一种快速有效的工具,可以结合微分方程和神经网络对各种自然现象进行建模和预测,为科学研究和应用提供有力支持。 ### 回答3: MATLAB Pinn代码是指用MATLAB编写的神经网络预测程序,它使用了物理约束以及神经网络来对某个系统或过程进行建模和预测。Pinn全称为Physics-Informed Neural Networks,是近年来出现的一种结合了物理约束和神经网络的技术,其主要思想是将物理定律和现象加入到神经网络中,以提高神经网络的预测精度和泛化能力。 MATLAB Pinn代码的实现过程中,主要分为以下几个步骤: 1. 数据预处理:对原始数据进行清洗、预处理和特征提取,以便后续神经网络进行训练和预测。其中包括对数据进行标准化、降维和筛选等操作。 2. 模型搭建:根据物理模型和神经网络模型,构建全局损失函数和局部损失函数,并将其加入到神经网络的训练过程中,以提高模型的精度和泛化能力。 3. 训练模型:利用已预处理的数据集,使用反向传播算法对神经网络进行训练,并监测模型的训练误差和验证误差,以调整模型参数并优化模型性能。 4. 模型预测:将训练好的模型应用到新的数据上,进行预测并输出结果。同时,对预测结果进行评估和分析,以检验模型的准确性和可靠性。 总之,MATLAB Pinn代码是一种全新的、高度灵活和可扩展的预测方法,可用于各种科学研究、工程应用和商业领域,具有很大的应用潜力和商业价值。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jedi-knight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值