固体火箭发动机三维装药逆向内弹道计算

什么是逆向内弹道计算?

通常的内弹道计算是已知燃面面积随烧去肉厚的变化曲线( A b − w {A_{\rm{b}}}-w Abw)之后再计算燃烧室压力随时间变化的曲线( p c − t {p_{\rm{c}}}-t pct)。而逆向内弹道计算即是已知 p c − t {p_{\rm{c}}}-t pct后计算 A b − w {A_{\rm{b}}}-w Abw。逆向内弹道计算对装药设计有重要指导作用

计算公式

平衡状态下,燃烧室的压力计算方法为
p c = ( a c ∗ ρ p A b A t ) 1 1 − n {p_{\rm{c}}} = {\left( {a{c^*}{\rho _{\rm{p}}}{{{A_{\rm{b}}}} \over {{A_{\rm{t}}}}}} \right)^{{1 \over {1 - n}}}} pc=(acρpAtAb)1n1
可以解得
A b = A t p c 1 − n a c ∗ ρ p {A_{\rm{b}}} = {A_t}{{{p_{\rm{c}}}^{1 - n}} \over {a{c^*}{\rho _{\rm{p}}}}} Ab=Atacρppc1n
燃烧肉厚可以通过积分得到
w = ∫ 0 t a p c ( τ ) n d τ w = \int\limits_0^t {a{p_{\rm{c}}}{{\left( \tau \right)}^n}{\rm{d}}\tau } w=0tapc(τ)ndτ

无量纲化

无量纲燃面面积为
A b + C = A b π R 2 π R 2 A t = p c 1 − n a c ∗ ρ p {A_{\rm{b}}}^ + C = {{{A_{\rm{b}}}} \over {\pi {R^2}}}{{\pi {R^2}} \over {{A_t}}} = {{{p_{\rm{c}}}^{1 - n}} \over {a{c^*}{\rho _{\rm{p}}}}} Ab+C=πR2AbAtπR2=acρppc1n
无量纲燃烧肉厚为
w + = w R = ∫ 0 t a p c ( τ ) n d τ R {w^ + } = {w \over R} = {{\int\limits_0^t {a{p_{\rm{c}}}{{\left( \tau \right)}^n}{\rm{d}}\tau } } \over R} w+=Rw=R0tapc(τ)ndτ
对于任意两个几何相似的装药,将拥有相同的 A b + − w + {A_{\rm{b}}}^ + - {w^ + } Ab+w+曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jedi-knight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值