启发式算法(通俗解释)

定义

群体智能算法就是启发式算法;研究的重点就是如何平衡局部搜索与全局搜索;有效逃离局部最优解;通俗的解释就是利用类似仿生学的原理,将自然、动物中的一些现象抽象成为算法处理相应问题。当一个问题是NP难问题时,是无法求解到最优解的,因此,用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。

举例

最后用网上一段描述各种搜索算法的例子来作为总结:为了找出地球上最高的山,一群有志的兔子们开始想办法。

  1. 兔子朝着比现在高的地方跳去。他们找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山法,它不能保证局部最优值就是全局最优值。
  2. 兔子喝醉了。他随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,他渐渐清醒了并朝他踏过的最方向跳去。这就是模拟退火
  3. 兔子们知道一个兔的力量是渺小的。他们互相转告着,哪里的山已经找过,并组找过的每一座山他们都留 下一只兔子做记号。他们制定了下一步去哪里寻找的策略。这就是禁忌搜索
  4. 兔子们吃了失忆药片,并被发射到太空,然后随机落到了地球上的某些地方。他们不知道自己的使命是什么。但是,如果你过几年就杀死一部分海拔低的兔子, 多产的兔子们自己就会找到珠穆朗玛峰。这就是遗传算法
  5. 一群兔子朝着各处跳去,去了最高处山的兔子发出信号影响周围的兔子朝它跳去。慢慢最高的山去了越来越多的兔子,直到所有兔子全都集中在最高山。这就是蚁群算法
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页