对抗样本cleverhans的使用

本文介绍了如何使用cleverhans库生成对抗样本,包括FGSM、PGD和CW攻击。首先,加载并训练了一个简单的MNIST分类模型,然后通过这些攻击方法展示了如何使模型对输入数据产生错误预测,从而揭示了模型的脆弱性。
摘要由CSDN通过智能技术生成

cleverhans模块的使用

介绍

  • cleverhans是一个开源的对抗样本库,最新版本v4.0.0支持pytorchv3.1.0及之前仅仅支持tensorflow
  • 里面实现了常见对抗样本的攻击和防御,v4.0.0版本还不太完善,仅仅实现了部分算法
  • 下载:
    • pip install cleverhans

使用:

对抗样本生成常见流程:
  • 收集处理数据
  • 构建并训练目标模型
  • 实现相应的对抗样本算法,实现与之对应的对抗样本
导入对应包
import cleverhans
from cleverhans.torch.attacks.fast_gradient_method import fast_gradient_method
from cleverhans.torch.attacks.carlini_wagner_l2 import carlini_wagner_l2
from cleverhans.torch.attacks.projected_gradient_descent import projected_gradient_descent
import numpy as np
import torch
import torch.nn as nn
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os
import torch.nn.functional as F
from tqdm import tqdm
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
%matplotlib inline
收集处理数据:

我们采用torchvision模块中的MNIST数据集

#MNIST数据集加载和处理
train_data=MNIST(root="data",train=True,download=False,transform=ToTensor())
test_data=MNIST(root="data",train=False,download=False,transform=ToTensor())

在这里插入图片描述

#数据处理
batch_size=16
train_loader=DataLoader(train_data,batch_size=batch_size)
test_loader=DataLoader(test_data,batch_size=batch_size)
原始数据可视化:
for x,label in train_loader:
    plt.figure(figsize=(16,8))
    id=0
    for i in range(4):
        for j in range(4):
            plt.subplot(4,4,id+1)
            plt.imshow(x[id,0].reshape(28,28),cmap="gray")
            plt.title(str(label[id].detach().numpy()),{"color":"red"})
            plt.axis("off")
            id+=1
    break

在这里插入图片描述

构建模型进行训练:
#构建网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv=nn.Sequential(nn.Conv2d(1,16,3,1,0),nn.ReLU(),nn.Conv2d(16,8,3,1,0),nn.ReLU())
        self.full=nn.Sequential(nn.Linear(8*24*24,32),nn.ReLU(),nn.Linear(32,10))
    def weight_init(self):
        for m in self._modules:
            if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):  #判断当前网络结构是否为全连接层或者卷积层
                m.weight.data.normal_(0.0, 0.01)
                m.bias.data.zero_()
    def forward(self,inx):
        x=self.conv(inx)
#         print(x.shape)
#         input()
        x=x.view(-1,8*24*24)
        x=self.full(x)
        return x

在这里插入图片描述

模型训练
#模型训练
def train(model,data_loader,loss_func,epochs,lr):
    optimizer=torch.optim.Adam(model.parameters(),lr)
    for epoch in range(1,epochs+1):
        for i,(x,y) in tqdm(enumerate(data_loader)):
            x=x.to(device)
            y=y.to(device)
            out=model(x)
            loss=loss_func(out,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if i%1000==0:
                print(f"epoch:{epoch}|| current_num:{i}|| loss:{loss}")
criterion=nn.CrossEntropyLoss()
lr=1e-3
epochs=1
net.weight_init()

在这里插入图片描述

模型测试:
def test(model,data_loader):
    correct_sum=0
    all_sum=0
    for x,y in data_loader:
        x=x.to(device)
        out=torch.argmax(model(x),dim=1).cpu()
        correct=(out==y).sum()
        correct_sum+=correct
        all_sum+=len(y)
    return correct_sum/all_sum

在这里插入图片描述

sample=next(iter(test_loader))
data,label=sample
predic=torch.argmax(net(data.to(device)),dim=1).detach().cpu()
plt.figure(figsize=(16,8))
id=0
for i in range(4):
    for j in range(4):
        plt.subplot(4,4,id+1)
        plt.imshow(data[id,0].reshape(28,28),cmap="gray")
        plt.title(f"{label[id]}->{predic[id]}",{"color":"red"})
        plt.axis("off")
        id+=1

在这里插入图片描述

对抗样本生成
FGSM算法:
advx=fast_gradient_method(net,data.to(device),0.1,np.inf).detach().cpu()
predic=torch.argmax(net(advx.to(device)),dim=1).detach().cpu()
plt.figure(figsize=(16,8))
id=0
for i in range(4):
    for j in range(4):
        plt.subplot(4,4,id+1)
        plt.imshow(advx[id,0].reshape(28,28),cmap="gray")
        plt.title(f"{label[id]}->{predic[id]}",{"color":"red"})
        plt.axis("off")
        id+=1

在这里插入图片描述

PGD算法:
advx=projected_gradient_descent(net,data.to(device),0.1,0.05,40,np.inf).detach().cpu()
predic=torch.argmax(net(advx.to(device)),dim=1).detach().cpu()

在这里插入图片描述

CW算法
1.定向攻击,target=5
advx=carlini_wagner_l2(net,data.to(device),10,torch.tensor([5]*batch_size,device=device),targeted=True).detach().cpu()
predic=torch.argmax(net(advx.to(device)),dim=1).detach().cpu()

在这里插入图片描述

2.非定向攻击
advx=carlini_wagner_l2(net,data.to(device),10,torch.tensor([5]*batch_size,device=device),targeted=False).detach().cpu()
predic=torch.argmax(net(advx.to(device)),dim=1).detach().cpu()

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值