204. 计数质数-暴力解法和埃氏筛
给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0
输出:0
示例 3:
输入:n = 1
输出:0
暴力解法呢,时间上应该是通过不了,解题代码如下:
bool isPrime(int x) {
for (int i = 2; i * i <= x; ++i) {
if (x % i == 0) {
return false;
}
}
return true;
}
int countPrimes(int n) {
int ans = 0;
for (int i = 2; i < n; ++i) {
ans += isPrime(i);
}
return ans;
}
埃氏筛是空间换时间的做法,解题代码如下:
int countPrimes(int n){
int sum=0;
if(n==0){
return 0;
}
int r[n];
for(int i=2;i<n;i++){
r[i]=0;
}
for(int i=2;i<n;i++){
if(r[i]==0){
sum++;
for(int j=2*i;j<n;j=j+i){
r[j]=1;
}
}
}
return sum;
}