数据挖掘day02-微积分的本质04~06

04、直观理解链式法则和乘法法则

Q1、复合函数如何求导?

在这里插入图片描述

1.1、对于加法法则:两个函数的和的导数,就是他们的导数和

用下图形解析 d d x ( s i n ( x ) + x 2 ) \frac{d}{dx}(sin(x)+x^2) dxd(sin(x)+x2):

从几何意义 d ( s i n ( x ) + x 2 ) d(sin(x)+x^2) d(sin(x)+x2)指函数 s i n ( x ) + x 2 sin(x)+x^2 sin(x)+x2 y y y轴的增量,等于 d s i n ( x ) + d x 2 dsin(x)+dx^2 dsin(x)+dx2

d d x ( s i n ( x ) + x 2 ) = d s i n ( x ) + d x 2 d x = d s i n ( x ) d x + d x 2 d x \frac{d}{dx}(sin(x)+x^2)=\frac{dsin(x)+dx^2}{dx}=\frac{dsin(x)}{dx}+\frac{dx^2}{dx} dxd(sin(x)+x2)=dxdsin(x)+dx2=dxdsin(x)+dxdx2
在这里插入图片描述

1.2、对于乘法法则:左乘右导,右乘左导

如下图,函数 f ( x ) = g ( x ) h ( x ) f(x)=g(x)h(x) f(x)=g(x)h(x)的增量,即绿色部分面积(忽略红色部分,极小值),同时求导,则得出结果:
在这里插入图片描述

1.3、链式法则:

举例: g ( x ) = s i n ( x 2 ) g(x)=sin(x^2) g(x)=sin(x2)如何求导?

增加一个中间函数 h ( x ) h(x) h(x) ,则 g ( x ) = s i n ( x ) g(x)=sin(x) g(x)=sin(x) h ( x ) = x 2 h(x)=x^2 h(x)=x2
在这里插入图片描述
x x x的变换导致 h ( x ) = x 2 h(x)=x^2 h(x)=x2变化,导致 g ( x ) = s i n ( x ) g(x)=sin(x) g(x)=sin(x)的变化

函数 g ( x ) = s i n ( x ) g(x)=sin(x) g(x)=sin(x)的变化量 d ( s i n ( h ) ) = c o s ( h ) d h d(sin(h))=cos(h)dh d(sin(h))=cos(h)dh(提示: d f df df是函数变化量, d f d x \frac{df}{dx} dxdf才是求导)

其导数为 d d x ( s i n ( h ) ) = c o s ( h ) d h d x \frac{d}{dx}(sin(h))=cos(h)\frac{dh}{dx} dxd(sin(h))=cos(h)dxdh,这就是链式法则(下图):

代入 h ( x ) = x 2 h(x)=x^2 h(x)=x2 得: d d x ( s i n ( h ) ) = c o s ( x 2 ) 2 x \frac{d}{dx}(sin(h))=cos(x^2)2x dxd(sin(h))=cos(x2)2x
在这里插入图片描述

05、指数函数求导?

首先考虑 M ( t ) = 2 t M(t)=2^t M(t)=2t:

d M d t ( t ) = 2 t + d t − 2 t d t = 2 t ( 2 d t − 1 d t ) \frac{dM}{dt}(t)=\frac{2^{t+dt}-2^t}{dt}=2^t\left(\frac{2^{dt-1}}{dt}\right) dtdM(t)=dt2t+dt2t=2t(dt2dt1)

同理, d ( 8 t ) d t = 8 t ( 8 d t − 1 d t ) \frac{d(8^t)}{dt}=8^t\left(\frac{8^{dt-1}}{dt}\right) dtd(8t)=8t(dt8dt1),其实通过代入非常小的数发现,右侧括弧内都是常数,如下图:
在这里插入图片描述
那么,是否存在一个数使右侧常数为1?这样该数的求导就是它本身了。假设该数是e

即: e d t − 1 d t = 1 \frac{e^{dt-1}}{dt}=1 dtedt1=1 d ( e t ) d t = e t \frac{d(e^t)}{dt}=e^t dtd(et)=et

这时候定义一个函数,将所有 n t n^t nt,可以写作 e e e的函数,基于指数的特性,令 e x = n e^x=n ex=n n t = e x t n^t=e^{xt} nt=ext

就变成一个复合函数求导,基于 e t e^t et的导数为其自身,这下就可以求导了: d ( n t ) d t = d ( e x t ) d t = x e x t \frac{d(n^t)}{dt}=\frac{d(e^{xt})}{dt}=xe^{xt} dtd(nt)=dtd(ext)=xext

那么定义该函数可以定义为: x = l o g e n x=log_en x=logen,即对数,由于e为常数, l o g e n log_en logen又写做 l n ( n ) ln(n) ln(n)

d ( n t ) d t = x e x t = l n ( n ) e l n ( n ) t = l n ( n ) n t \frac{d(n^t)}{dt}=xe^{xt}=ln(n)e^{ln(n)t}=ln(n)n^t dtd(nt)=xext=ln(n)eln(n)t=ln(n)nt

对比最开始 M ( t ) = 2 t M(t)=2^t M(t)=2t的求导结果,右侧括弧内的常数可知: l n ( n ) = n d t − 1 d t ln(n)=\frac{n^{dt-1}}{dt} ln(n)=dtndt1

其实,对比上面的解释,我觉得更应该是这样的:

某数学家推算到这个结果: d 2 t d t = 2 t ( 2 d t − 1 d t ) \frac{d2^t}{dt}=2^t\left(\frac{2^{dt-1}}{dt}\right) dtd2t=2t(dt2dt1)

然后,发现当 d t dt dt趋于零时, 2 d t − 1 d t \frac{2^{dt-1}}{dt} dt2dt1可能是常数,令 f ( 2 ) = 2 d t − 1 d t f(2)=\frac{2^{dt-1}}{dt} f(2)=dt2dt1

根据复合函数求导规则, d 2 t d t = 2 t f ( 2 ) \frac{d2^t}{dt}=2^tf(2) dtd2t=2tf(2),则原函数写成关于 f ( 2 ) t f(2)t f(2)t的复合函数更合适,假设存在未知数 e e e令: e f ( 2 ) = 2 e^{f(2)}=2 ef(2)=2

那么就可以写成: d e f ( 2 ) t d t = 2 t f ( 2 ) \frac{de^{f(2)t}}{dt}=2^tf(2) dtdef(2)t=2tf(2),完全符合链式法则,最后定义 f ( x ) f(x) f(x) l n ( x ) ln(x) ln(x)

06、隐函数求导是怎么回事?

Q1、对 x 2 + y 2 = 5 x^2+y^2=5 x2+y2=5,求导是怎么回事?

毫无疑问,求 d y d x \frac{dy}{dx} dxdy可以看做是求直径 d = 5 d=5 d=5的圆上的点的斜率,如下图:
在这里插入图片描述
如果觉得奇怪,也可以这么理解:

1个5米的梯子放在墙上,向下滑动,上端滑动速度是 d y d t = 1 m / s \frac{dy}{dt}=1m/s dtdy=1m/s,求下端移动速度 d x d t \frac{dx}{dt} dtdx

如下图,代入其中一点 ( x = 3 , y = 4 ) (x=3,y=4) (x=3,y=4) d x d t = 4 3 \frac{dx}{dt}=\frac43 dtdx=34

这个例子,无非就是让它动起来,有现实意义,比上一个例子好理解。
在这里插入图片描述

Q2、对 y = l n ( x ) y=ln(x) y=ln(x),求导是怎么回事?

又例如下图,当 y = l n ( x ) y=ln(x) y=ln(x)时, d y d x = 1 x \frac{dy}{dx}=\frac1x dxdy=x1

其实,这一节只是说明当两个量相关时,他们是如何变化的,为后面多元微积分入门铺路。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值