GoogLeNet InceptionV1代码复现+超详细注释(PyTorch)

昨天我们学习了GoogLeNet的论文,指路→经典神经网络论文超详细解读(三)——GoogLeNet学习笔记(翻译+精读)

今天我们就来复现一下代码吧!话不多说,讲解都在注释里。(这可能是全网最详细的注释哦) 


第一步:定义基础卷积模块(卷积+ReLU+前向传播函数)

'''-------------------第一步:定义基础卷积模块(卷积+ReLU+前向传播函数)--------------'''
class BasicConv2d(nn.Module):
    # init():进行初始化,申明模型中各层的定义
    def __init__(self, in_channels, out_channels, **kwargs):
        '''
        :param in_channels: 输入特征矩阵的深度
        :param out_channels:输出特征矩阵的深度
        :param kwargs:*args代表任何多个无名参数,返回的是元组;
                      **kwargs表示关键字参数,所有传入的key=value,返回字典;
        '''
        super(BasicConv2d, self).__init__() #BasicConv2d():卷积激活
        '''卷积层'''
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        '''Relu层'''
        self.relu = nn.ReLU(inplace=True) # ReLU(inplace=True):将tensor直接修改,不找变量做中间的传递,节省运算内存,不用多存储额外的变量
        '''前向传播函数'''
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

第二步:定义Inception模块

'''--------------------------第二步:定义Inception模块----------------------'''
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        '''branch1——单个1x1卷积层'''
        #使用1*1的卷积核,将(Hin,Win,in_channels)-> (Hin,Win,ch1x1),特征图大小不变,主要改变的是通道数得到第一张特征图(Hin,Win,ch1x1)。
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        '''branch2——1x1卷积层后接3x3卷积层'''
        #先使用1*1的卷积核,将(Hin,Win,in_channels)-> (Hin,Win,ch3x3red),特征图大小不变,缩小通道数,减少计算量,然后在使用大小3*3填充1的卷积核,保持特征图大小不变,改变通道数为ch3x3,得到第二张特征图(Hin,Win,ch3x3)。
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            # 保证输出大小等于输入大小
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        '''branch3——1x1卷积层后接5x5卷积层'''
        #先使用1*1的卷积核,将(Hin,Win,in_channels)-> (Hin,Win,ch5x5red),特征图大小不变,缩小通道数,减少计算量,然后在使用大小5*5填充2的卷积核,保持特征图大小不变,改变通道数为ch5x5,得到第三张特征图(Hin,Win,ch5x5)。
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            # 保证输出大小等于输入大小
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
        )

        '''branch4——3x3最大池化层后接1x1卷积层'''
        #先经过最大池化层,因为stride=1,特征图大小不变,然后在使用大小1*1的卷积核,保持特征图大小不变,改变通道数为pool_proj,得到第四张特征图(Hin,Win,pool_proj)。
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        # 在通道维上拼接输出最终特征图。(Hin,Win,ch1x1+ch1x1+ch5x5+pool_proj)
        outputs = [branch1, branch2, branch3, branch4]
        # cat():在给定维度上对输入的张量序列进行连接操作
        return torch.cat(outputs, 1)


第三步:定义辅助分类器InceptionAux

'''---------------------第三步:定义辅助分类器InceptionAux----------------------'''
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        '''均值池化'''
        # nn.AvgPool2d(kernel_size=5, stride=3):平均池化下采样。核大小为5x5,步长为3。
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        '''1×1卷积'''
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)
        '''全连接输出'''
        # nn.Linear(2048, 1024)、nn.Linear(1024, num_classes):经过两个全连接层得到分类的一维向量。
        # 上一层output[batch, 128, 4, 4],128X4X4=2048
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    # 前向传播过程:即如何根据输入x计算返回所需要的模型输出
    def forward(self, x):
        # 输入:aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # 输入:aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # 输入:N x 128 x 4 x 4
        x = torch.flatten(x, 1)#torch.flatten(x, 1):从深度方向对特征矩阵进行推平处理,从三维降到二维。
        # 设置.train()时为训练模式,self.training=True
        x = F.dropout(x, 0.5, training=self.training)
        # 输入:N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # 输入:N x 1024
        x = self.fc2(x)
        # 返回值:N*num_classes
        return x

第四步:搭建GoogLeNet网络

'''-----------------------第四步:搭建GoogLeNet网络-----------------------------'''
class GoogLeNet(nn.Module):

    def __init__(self, num_classes=2, aux_logits=True, init_weights=False):
        '''
        init():进行初始化,申明模型中各层的定义
        :param num_classes: 需要分类的类别个数
        :param aux_logits: 训练过程是否使用辅助分类器,init_weights:是否对网络进行权重初始化
        :param init_weights:初始化权重
        '''
        super(GoogLeNet, self).__init__()

        # aux_logits: 是否使用辅助分类器(训练的时候为True, 验证的时候为False)
        self.aux_logits = aux_logits

        '''第一部分:一个卷积层+一个最大池化层'''
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        # 最大池化层类MaxPool2d()参数含义:kernel_size :表示做最大池化的窗口大小,stride :步长, padding :填充,dilation :控制窗口中元素步幅,return_indices :布尔类型,返回最大值位置索引,
        # ceil_mode :布尔类型,为True,用向上取整的方法,计算输出形状;默认是向下取整。
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        '''第二部分:两个卷积层+一个最大池化层'''
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)


        '''第三部分:3a层和3b层+最大池化层'''
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        '''
         # Inception(192, 64, 96, 128, 16, 32, 32)中参数分别代表输入深度为192的特征矩阵,
         第一层卷积核数量为64,输出深度64。
         第二层卷积核数量为96,输出深度96。
         第三层卷积核数量为128,输出深度128。
         第四层卷积核数量为16,输出深度16。
         第五层卷积核数量为32,输出深度32。
         第六层最大池化输出深度32不变。
        '''
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        '''第四部分:4a层、4b层、4c层、4d层、4e层+最大池化层'''
        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        '''第五部分:5a层和5b层'''
        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        # 如果为真,则使用辅助分类器
        if self.aux_logits:
           self.aux1 = InceptionAux(512, num_classes)  # aux1传入的深度是来自于inception4a的输出深度,所以为512.即为4a提供分类服务
           self.aux2 = InceptionAux(528, num_classes)  # aux2传入的深度是来自于inception4d的输出深度,所以为528.即为4d提供分类服务

        '''均值池化 '''
        # AdaptiveAvgPool2d:自适应平均池化,指定输出(H,W)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        '''全连接输出 '''
        self.fc = nn.Linear(1024, num_classes)
        # 如果为真,则对网络参数进行初始化
        if init_weights:
            self._initialize_weights()

    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14

        '''在4a层和4b层、4d和4e层之间会有一个判断:如果使用辅助分类器会调用辅助分类器aux1并返回一个分类结果'''
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        # 设置.train()时为训练模式,self.training=True
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        '''最终分类部分'''
        '''由平均池化层+dropout+全连接层输出x,
        如果使用到辅助分类器就输出x, aux2, aux1。
        其中采用了平均池化层来代替全连接层,事实证明这样可以提高准确率0.6%。
        最后还是加了一个全连接层,主要是为了方便对输出进行灵活调整。'''
        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)

        '''最后在全连接层之后还会有一个判断:判断模型若处于训练状态并且调用辅助分类器则返回3个结果:主分类结果,分类器1和分类器2生成的分类结果。'''
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:
            return x, aux2, aux1
        return x

第五步*:网络结构参数初始化

 '''-----------------------网络结构参数初始化--------------------------'''
    #目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):# 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。

        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True

            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)

                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

效果展示 


完整代码

import torch
import torch.nn as nn
import torch.nn.functional as F
# noinspection PyUnresolvedReferences
from torchsummary import summary   #torchsummary功能:查看网络层形状、参数



'''-------------------------第一步:定义基础卷积模块(卷积+ReLU+前向传播函数)--------'''
class BasicConv2d(nn.Module):
    # init():进行初始化,申明模型中各层的定义
    def __init__(self, in_channels, out_channels, **kwargs):
        '''
        :param in_channels: 输入特征矩阵的深度
        :param out_channels:输出特征矩阵的深度
        :param kwargs:*args代表任何多个无名参数,返回的是元组;**kwargs表示关键字参数,所有传入的key=value,返回字典;
        '''
        super(BasicConv2d, self).__init__()#BasicConv2d():卷积激活
        '''卷积层'''
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        '''Relu层'''
        self.relu = nn.ReLU(inplace=True) # ReLU(inplace=True):将tensor直接修改,不找变量做中间的传递,节省运算内存,不用多存储额外的变量
        '''前向传播函数'''
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x


'''-------------------------第二步:定义Inception模块----------------------------'''
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        '''branch1——单个1x1卷积层'''
        #使用1*1的卷积核,将(Hin,Win,in_channels)-> (Hin,Win,ch1x1),特征图大小不变,主要改变的是通道数得到第一张特征图(Hin,Win,ch1x1)。
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        '''branch2——1x1卷积层后接3x3卷积层'''
        #先使用1*1的卷积核,将(Hin,Win,in_channels)-> (Hin,Win,ch3x3red),特征图大小不变,缩小通道数,减少计算量,然后在使用大小3*3填充1的卷积核,保持特征图大小不变,改变通道数为ch3x3,得到第二张特征图(Hin,Win,ch3x3)。
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            # 保证输出大小等于输入大小
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        '''branch3——1x1卷积层后接5x5卷积层'''
        #先使用1*1的卷积核,将(Hin,Win,in_channels)-> (Hin,Win,ch5x5red),特征图大小不变,缩小通道数,减少计算量,然后在使用大小5*5填充2的卷积核,保持特征图大小不变,改变通道数为ch5x5,得到第三张特征图(Hin,Win,ch5x5)。
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            # 保证输出大小等于输入大小
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
        )

        '''branch4——3x3最大池化层后接1x1卷积层'''
        #先经过最大池化层,因为stride=1,特征图大小不变,然后在使用大小1*1的卷积核,保持特征图大小不变,改变通道数为pool_proj,得到第四张特征图(Hin,Win,pool_proj)。
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        # 在通道维上拼接输出最终特征图。(Hin,Win,ch1x1+ch1x1+ch5x5+pool_proj)
        outputs = [branch1, branch2, branch3, branch4]
        # cat():在给定维度上对输入的张量序列进行连接操作
        return torch.cat(outputs, 1)


'''---------------------第三步:定义辅助分类器InceptionAux----------------------'''
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        '''均值池化'''
        # nn.AvgPool2d(kernel_size=5, stride=3):平均池化下采样。核大小为5x5,步长为3。
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        '''1×1卷积'''
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)
        '''全连接输出'''
        # nn.Linear(2048, 1024)、nn.Linear(1024, num_classes):经过两个全连接层得到分类的一维向量。
        # 上一层output[batch, 128, 4, 4],128X4X4=2048
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    # 前向传播过程:即如何根据输入x计算返回所需要的模型输出
    def forward(self, x):
        # 输入:aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # 输入:aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # 输入:N x 128 x 4 x 4
        x = torch.flatten(x, 1)#torch.flatten(x, 1):从深度方向对特征矩阵进行推平处理,从三维降到二维。
        # 设置.train()时为训练模式,self.training=True
        x = F.dropout(x, 0.5, training=self.training)
        # 输入:N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # 输入:N x 1024
        x = self.fc2(x)
        # 返回值:N*num_classes
        return x



'''-------------------------第四步:GoogLeNet网络----------------------'''
class GoogLeNet(nn.Module):

    def __init__(self, num_classes=2, aux_logits=True, init_weights=False):
        '''
        init():进行初始化,申明模型中各层的定义
        :param num_classes: 需要分类的类别个数
        :param aux_logits: 训练过程是否使用辅助分类器,init_weights:是否对网络进行权重初始化
        :param init_weights:初始化权重
        '''
        super(GoogLeNet, self).__init__()


        # aux_logits: 是否使用辅助分类器(训练的时候为True, 验证的时候为False)
        self.aux_logits = aux_logits

        '''第一部分:一个卷积层+一个最大池化层'''
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        # 最大池化层类MaxPool2d()参数含义:kernel_size :表示做最大池化的窗口大小,stride :步长, padding :填充,dilation :控制窗口中元素步幅,return_indices :布尔类型,返回最大值位置索引,
        # ceil_mode :布尔类型,为True,用向上取整的方法,计算输出形状;默认是向下取整。
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        '''第二部分:两个卷积层+一个最大池化层'''
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)


        '''第三部分:3a层和3b层+最大池化层'''
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        '''
         # Inception(192, 64, 96, 128, 16, 32, 32)中参数分别代表输入深度为192的特征矩阵,
         第一层卷积核数量为64,输出深度64。
         第二层卷积核数量为96,输出深度96。
         第三层卷积核数量为128,输出深度128。
         第四层卷积核数量为16,输出深度16。
         第五层卷积核数量为32,输出深度32。
         第六层最大池化输出深度32不变。
        '''
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        '''第四部分:4a层、4b层、4c层、4d层、4e层+最大池化层'''
        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        '''第五部分:5a层和5b层'''
        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        # 如果为真,则使用辅助分类器
        if self.aux_logits:
           self.aux1 = InceptionAux(512, num_classes)  # aux1传入的深度是来自于inception4a的输出深度,所以为512.即为4a提供分类服务
           self.aux2 = InceptionAux(528, num_classes)  # aux2传入的深度是来自于inception4d的输出深度,所以为528.即为4d提供分类服务

        '''均值池化 '''
        # AdaptiveAvgPool2d:自适应平均池化,指定输出(H,W)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        '''全连接输出 '''
        self.fc = nn.Linear(1024, num_classes)
        # 如果为真,则对网络参数进行初始化
        if init_weights:
            self._initialize_weights()

    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14

        '''在4a层和4b层、4d和4e层之间会有一个判断:如果使用辅助分类器会调用辅助分类器aux1并返回一个分类结果'''
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        # 设置.train()时为训练模式,self.training=True
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        '''最终分类部分'''
        '''由平均池化层+dropout+全连接层输出x,
        如果使用到辅助分类器就输出x, aux2, aux1。
        其中采用了平均池化层来代替全连接层,事实证明这样可以提高准确率0.6%。
        最后还是加了一个全连接层,主要是为了方便对输出进行灵活调整。'''
        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)

        '''最后在全连接层之后还会有一个判断:判断模型若处于训练状态并且调用辅助分类器则返回3个结果:主分类结果,分类器1和分类器2生成的分类结果。'''
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:
            return x, aux2, aux1
        return x


    '''-------------------------------网络结构参数初始化---------------------------'''
    #目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):# 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。

        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True

            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)

                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)



if __name__ == '__main__':
    # 随机输入,测试网络结构是否通
    net = GoogLeNet(num_classes=2).cuda()
    summary(net, (3, 224, 224))

以上就是InceptionV1的代码复现

相关链接:GoogLeNet InceptionV3代码复现+超详细注释(PyTorch)

有什么问题欢迎大家留言讨论呀~

  • 24
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,以下是使用PyTorch复现PointNet++的步骤: 1. 安装PyTorch和其他必要的库,如numpy、scipy、h5py等。 2. 下载PointNet++的代码和数据集。可以从官方GitHub仓库下载代码,数据集可以从官方网站下载。 3. 将数据集转换为PyTorch可以处理的格式。可以使用h5py库读取数据集,然后将数据转换为PyTorch张量。 4. 编写模型代码。PointNet++的模型代码可以在PointNet++的GitHub仓库中找到。将代码转换为PyTorch版本并进行必要的修改。 5. 训练模型。使用PyTorch的优化器和损失函数训练模型。可以使用PyTorch的DataLoader加载数据集,并使用PyTorch的GPU加速训练过程。 6. 测试模型。使用测试集测试模型的性能。可以使用PyTorch的评估函数计算模型的准确率和其他指标。 7. 调整模型。根据测试结果调整模型的参数和架构,以提高模型的性能。 以上是使用PyTorch复现PointNet++的基本步骤。需要注意的是,这只是一个大致的指导,具体的实现过程可能会因为数据集和模型的不同而有所不同。 ### 回答2: PointNet 是一种用于点云数据的深度学习模型,其对点云进行全局池化(global pooling)以及局部特征学习(local feature learning)的方法使得其在各种场景中取得了非常好的结果。本文将介绍如何使用 PyTorch 复现 PointNet 模型。 首先,我们需要准备数据。PointNet 接收的输入是点云,我们可以通过采样或者转换方法将 mesh 数据转换为点云数据。在转换为点云后,我们可以将点云转换为 numpy array,并使用 PyTorch 的 DataLoader 进行数据预处理。在这里我们使用 ModelNet40 数据集进行实验。 接下来,我们需要定义 PointNet 模型的结构。PointNet 包括两个编码器和一个分类器。编码器用于从点云中提取特征信息,分类器用于将提取的特征映射到具体的分类标签。这里我们定义一个函数 PointNetCls,将编码器和分类器都封装在这个函数中。 ```python import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class PointNetCls(nn.Module): def __init__(self, k=40): super(PointNetCls, self).__init__() self.k = k self.conv1 = nn.Conv1d(3, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, k) def forward(self, x): batchsize = x.size()[0] x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = torch.max(x, 2, keepdim=True)[0] x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) ``` 具体来讲,我们先使用三个卷积层提取特征信息,然后使用 max pooling 进行池化,最后通过三个全连接层将提取的特征映射到具体的分类标签。特别的,我们将最后一层的输出使用 softmax 函数来进行分类。 训练过程如下: ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = PointNetCls().to(device) optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(300): model.train() for batch_id, (data, label) in enumerate(train_loader): optimizer.zero_grad() data, label = data.to(device), label.to(device) pred = model(data) loss = F.nll_loss(pred, label) loss.backward() optimizer.step() print(f'Epoch {epoch}: Training Loss: {loss.item()}') model.eval() correct = 0 for data, label in test_loader: data, label = data.to(device), label.to(device) pred = model(data) pred = pred.data.max(1)[1] correct += pred.eq(label.data).cpu().sum() accuracy = correct.item() / float(len(test_loader.dataset)) print(f'Epoch {epoch}: Testing Accuracy: {accuracy}') ``` 可以看到,在训练阶段我们使用 Adam 优化器来优化模型,并使用负对数似然对数函数作为损失函数。在测试阶段我们将模型设置为评价模式,并使用预测结果和真实标签的比对结果计算准确率。 通过以上步骤,我们已经完成了一个 PointNet 的 PyTorch 实现。当然,为了提高准确率我们还可以对模型结构进行优化,如引入 dropout、batch normalization 等结构,或者将模型拓展到 PointNet++ 等更加优秀的架构。 ### 回答3: PointNet是一种针对点云数据进行分类和分割的深度学习模型,其在处理三维几何数据方面具有很好的效果,也被广泛应用于许多领域。为了复现PointNet模型,我们可以使用Pytorch框架进行实现。下面是针对PointNet复现详细步骤: 一、准备数据 首先需要准备点云数据集,我们可以使用ShapeNet数据集中的某些部分进行测试。我们需要将点云数据转化为numpy数组形式,并将其划分为训练集和验证集。 二、数据预处理 在进行训练工作之前,我们需要将点云数据进行预处理,包括点云的标准化和噪声过滤等操作。处理后的数据可以使用dataloader以batch的形式进行加载。 三、搭建模型 我们可以按照PointNet的论文中的模型结构进行搭建。线性变换、最大池化和ReLU激活层的堆叠是构成模型的主要部分。我们需要使用Pytorch中定义模型的方法实现PointNet模型。 四、训练模型 我们可以使用Pytorch自带的优化器,如Adam优化器来训练PointNet模型。在每个epoch结束后,我们可以计算模型在验证集上的精度和准确度,以评估模型性能。 五、测试模型 完成模型训练后,我们可以使用Pytorch中的模型预测方法对新的未见数据进行分类和分割预测。 这些就是复现PointNet模型的详细步骤。此外,还需要注意一些细节问题,例如使用GPU加速训练、采用KNN算法处理最近邻等。借助Pytorch框架,我们可以轻松地实现PointNet模型,从而应用到更多的实际场景中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路人贾'ω'

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值