手把手教你使用AutoDL云服务器训练yolov5模型

  

目录

📢0.准备工作

🎄1.进入AutoDL—创建实例

🌻 第①步:  注册账号

🌻 第②步:  租用服务器

🌻 第③步: 创建环境

🌻 第④步: 创建实例

🎄2.下载Xftp—上传文件

🌻 第①步:进入网站下载

🌻 第②步:安装Xftp

🌻 第③步:打开Xftp进行连接

🌻 第④步: 上传文件

🎄3.进入JupyterLab—配置环境

🌻第①步: 进入JupyterLab

🌻第②步:  解压文件

🌻第③步:  修改文件参数

🚀4.开始训练

💬省钱小tips 

🌟本人YOLOv5系列导航

🍀YOLOv5源码详解系列

🍀YOLOv5入门实践系列 

🍀YOLOv5改进系列


📢0.准备工作

(1)划分好的数据集

(2)如果是自己改进的模型,要保证在本地可以运行

(3)一点点零花钱


🎄1.进入AutoDL—创建实例

网址:AutoDL-品质GPU租用平台-租GPU就上AutoDL

🌻第①步:  注册账号

首先进入网站,注册账号并进行学生认证,认证成功有10块钱的代金券,领它!


🌻第②步:  租用服务器

然后点击算力市场,购买服务器。


🌻 第③步: 创建环境

大家可以根据自己的配置选择对应的版本。如果和我一样是yolov5可以选择这个社区镜像,选择u版那个。


🌻 第④步: 创建实例

点击立即创建,这样就可以在控制台看到我们已经租用成功了。


🎄2.下载Xftp—上传文件

 网址:XFTP - NetSarang Website (xshell.com)

 Xftp是一个功能强大的SFTP、FTP 文件传输软件。使用了 Xftp以后,MS Windows 用户能安全地在 UNIX/Linux 和 Windows PC 之间传输文件。

🌻 第①步:进入网站下载


🌻 第②步:安装Xftp

接下来就是不停地点“我接受”,“下一步”,选择安装位置的过程。


🌻 第③步:打开Xftp进行连接

首先分别复制SSH的登录指令和密码。

然后新建Xftp会话框。

输入主机、端口号、用户名、密码。

举个栗子,这是我复制的SSH:

  • 登录指令:ssh -p 48925 root@region-3.seetacloud.com
  • 密码:xxxx

所以我的输入就是: 

  • 主机HOST:region-3.seetacloud.com(刚才复制的登录指令@后面的内容)
  • 端口号:48925
  • 用户名:root
  • 密码:xxxx(刚才复制的密码)

点击连接,就成功连接上了。


🌻 第④步: 上传文件

在左边窗口找到文件对应位置,直接按住鼠标左键拖到右边就好了。

接下来就是漫长的上传时间~


🎄3.进入JupyterLab—配置环境

🌻第①步: 进入JupyterLab

打开JupyterLab,进入终端页


🌻第②步:  解压文件

在终端输入以下指令:

unzip xxx.zip 直接解压到当前文件夹中
或者
unzip -d xxx.zip 解压到指定文件夹中

 如下图所示:

 开始解压:


🌻第③步:  修改文件参数

首先修改数据集路径。直接复制数据集路径,前面要加上“/root/”

(因为每个人的文件目录是不同的,所以这一步只是记录我的,大家仅供参考~)

然后修改train.py参数

 (因为在本地训练时,大家的batchworkers设置的可能都是1和0,在服务器上我们就可以加快速度了。当然,这一步不是必要的,大家按照自行需要修改噢~)


🚀4.开始训练

输入以下指令:

cd 你的文件名 #进入环境

python train.py #开始训练

 这样就可以运行啦!

完结!撒花 


💬省钱小tips 

(1)AutoDL有无卡模式开机,不运行程序的时候可以选择无卡模式,比如导入代码、导入预训练模型等。测试网络模型(比如运行yolo.py还有detect.py都可以选择无卡模式)

 (2)如果有事离开可以算好预计时间,设置定时关机。


🌟本人YOLOv5系列导航

962f7cb1b48f44e29d9beb1d499d0530.gif​   🍀YOLOv5源码详解系列:  

YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析

​​​​​​YOLOv5源码逐行超详细注释与解读(2)——推理部分detect.py

YOLOv5源码逐行超详细注释与解读(3)——训练部分train.py

YOLOv5源码逐行超详细注释与解读(4)——验证部分val(test).py

YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml

YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py


962f7cb1b48f44e29d9beb1d499d0530.gif​​   🍀YOLOv5入门实践系列:  

YOLOv5入门实践(1)——手把手带你环境配置搭建

YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集

YOLOv5入门实践(3)——手把手教你划分自己的数据集

 YOLOv5入门实践(4)——手把手教你训练自己的数据集

  YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)


962f7cb1b48f44e29d9beb1d499d0530.gif 🍀YOLOv5改进系列:

YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析

YOLOv5改进系列(1)——添加SE注意力机制

YOLOv5改进系列(2)——添加CBAM注意力机制

YOLOv5改进系列(3)——添加CA注意力机制

YOLOv5改进系列(4)——添加ECA注意力机制

YOLOv5改进系列(5)——替换主干网络之 MobileNetV3

YOLOv5改进系列(6)——替换主干网络之 ShuffleNetV2

YOLOv5改进系列(7)——添加SimAM注意力机制

YOLOv5改进系列(8)——添加SOCA注意力机制

YOLOv5改进系列(9)——替换主干网络之EfficientNetv2

​​​​​​YOLOv5改进系列(10)——替换主干网络之GhostNet

YOLOv5改进系列(11)——添加损失函数之EIoU、AlphaIoU、SIoU、WIoU

YOLOv5改进系列(12)——更换Neck之BiFPN

YOLOv5改进系列(13)——更换激活函数之SiLU,ReLU,ELU,Hardswish,Mish,Softplus,AconC系列等

YOLOv5改进系列(14)——更换NMS(非极大抑制)之 DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS 、SIoU-NMS、Soft-NMS

YOLOv5改进系列(15)——增加小目标检测层

YOLOv5改进系列(16)——添加EMA注意力机制(ICASSP2023|实测涨点) 

YOLOv5改进系列(17)——更换IoU之MPDIoU(ELSEVIER 2023|超越WIoU、EIoU等|实测涨点)

### 使用 AutoDL 训练 YOLOv11 模型 当前可获得的信息主要集中在使用 AutoDL 平台来训练较早版本的 YOLO 系列模型,如 YOLOv5YOLOv8[^1][^2]。然而对于 YOLOv11 的具体指导尚缺乏直接提及。 尽管如此,在假设存在 YOLOv11 版本的情况下,基于现有资料可以推测出一套通用流程用于在 AutoDL 上启动任何新版本 YOLO 模型(包括假定存在的 YOLOv11)的训练工作: #### 准备环境 为了准备适合于 YOLOv11 的开发环境,建议通过社区镜像快速搭建所需依赖项。这通常涉及选择一个预配置了 Python 及其科学计算库(比如 PyTorch 或 TensorFlow)、CUDA 工具包以及其他可能必要的软件组件的基础 Docker 镜像[^1]。 ```bash docker pull autodl-community/autodl-tf-pytorch:latest ``` #### 数据集上传与处理 利用 Xftp 将本地数据传输到远程服务器上的指定目录下;接着编写脚本来完成图像标注文件转换成目标检测框架所支持的标准格式的任务,例如 COCO JSON 或者 Pascal VOC XML 文件。 #### 编写并调试代码 借助 VS Code 进行项目管理和源码编辑。针对特定应用场景调整超参数设置,并实现自定义层或损失函数等功能扩展。确保整个程序能够在小规模测试集中正常收敛后再投入大规模正式训练阶段。 #### 提交作业至集群调度器 最后一步就是把精心编写的 Python 脚本打包提交给 Slurm/SWQ 等分布式任务管理工具执行。注意合理规划资源分配策略以提高效率降低成本开销。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路人贾'ω'

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值