2025五一杯数学建模竞赛B题 矿山数据处理 保姆级教程讲解|模型讲解

完整内容请看文章最下面的推广群

DS数模-五一数学建模 B题保姆级教程思路分析+代码+数据教学

DS数模-五一数学建模竞赛 B题保姆级教程思路分析 矿山数据处理问题

下面我将以背景介绍、数据集分析、问题分析的步骤来给大家讲解B题的具体思路。

1 背景介绍

矿山监测技术的高速发展催生了海量高维、多源异构数据的产生,这类数据具有高空间分辨率、多时相(时间序列)和多维属性特征,其核心应用场景包括地质特征提取、储量估算、矿区环境监测及安全预警等。然而,数据规模的指数级增长导致存储、传输和计算资源成本激增,同时数据中的噪声、冗余和异构性对后续分析提出了严峻挑战。因此,​数据压缩、降维、去噪及建模技术成为解决矿山数据处理问题的核心手段,需在精度、效率与可解释性之间实现平衡。

难点是:1 压缩与还原的权衡​:降低存储成本的同时需保证还原后的数据质量(如MSE ≤ 0.005),避免关键地质特征丢失。2 噪声与数据质量​:监测数据常受传感器噪声、环境干扰影响,需通过标准化和去噪提升模型稳健性。3 高维数据处理​:矿山数据的高维性(如附件5)要求降维方法(如PCA、t-SNE、自编码器)在保留主要特征的前提下降低计算复杂度。4 模型泛化与解释性​:需设计自适应的参数调整算法(如问题4)以应对动态监测需求,并确保重构模型(如问题5)的可解释性。

所有问题均需先进行数据清洗(缺失值处理、异常值剔除)、标准化(归一化或Z-score)及噪声分析。

2 数据集分析

数据预处理步骤​:

  1. ​读取数据并检查结构​
  2. ​处理缺失值​
  3. ​检测并处理异常值​
  4. ​数据标准化(可选)​​
  5. ​保存预处理结果​

具体操作和Python代码如下:

  1. 数据读取​:将Excel文件读取为DataFrame,若无列名则命名为value。
  2. 数据概览​:输出前5行数据和统计摘要(均值、标准差、分位数等)。
  3. 缺失值检测​:检查是否存在缺失值。
  4. 异常值处理​:
  • 通过箱线图可视化异常值。
  • 使用IQR方法识别异常值,并将超出范围的值替换为上下界值。

  1. 标准化​:对清洗后的数据进行Z-score标准化,使数据均值为0,标准差为1。
  2. 保存结果​:将处理后的数据保存为CSV文件。
  3. 可视化​:展示处理后的数据分布和标准化结果。

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

# 1. 读取数据

file_path = 'B.xlsx'

df = pd.read_excel(file_path, sheet_name='Sheet1', header=None, names=['value'])

# 2. 数据概览

print("数据前5行:")

print(df.head())

print("\n数据描述统计:")

print(df.describe())

# 3. 检查缺失值

missing_values = df.isnull().sum()

print(f"\n缺失值数量:{missing_values[0]}")

# 4. 异常值检测(箱线图 + IQR方法)

plt.figure(figsize=(10, 4))

sns.boxplot(x=df['value'])

plt.title('异常值检测箱线图')

plt.show()

Q1 = df['value'].quantile(0.25)

Q3 = df['value'].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

outliers = df[(df['value'] < lower_bound) | (df['value'] > upper_bound)]

print(f"\n异常值数量:{len(outliers)}")

# 5. 处理异常值(替换为上下界值)

df_clean = df.copy()

df_clean['value'] = np.where(df_clean['value'] < lower_bound, lower_bound,

np.where(df_clean['value'] > upper_bound, upper_bound, df_clean['value']))

# 6. 数据标准化(Z-score标准化)

df_clean['value_zscore'] = (df_clean['value'] - df_clean['value'].mean()) / df_clean['value'].std()

# 7. 保存处理后数据

df_clean.to_csv('processed_B.csv', index=False)

# 8. 可视化处理后数据分布

plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)

sns.histplot(df_clean['value'], kde=True)

plt.title('处理后的数据分布')

plt.subplot(1, 2, 2)

sns.histplot(df_clean['value_zscore'], kde=True)

plt.title('标准化后数据分布')

plt.tight_layout()

plt.show()

可视化选择建议​

  • ​探索性分析​:优先使用分布对比图、KDE、CDF。
  • ​统计检验​:使用Q-Q图验证分布假设。
  • ​时间序列​:滚动均值图 + 自相关图。
  • ​异常值分析​:箱线图、小提琴图。

3 问题分析

问题一的分析与建模:

假设问题一需要解决多源矿山数据的空间对齐或坐标转换,例如将不同传感器采集的二维/三维点云数据(如附件1和附件2)通过仿射变换(Affine Transformation)统一到同一坐标系下,并验证转换精度。

建模过程:

推荐算法​

  • ​SVD-based仿射变换​:适用于理想点对匹配,计算效率高
  • ​RANSAC + SVD​:对异常值鲁棒,适合实际工程场景
  • ​ICP(迭代最近点)​​:当点对未明确对应时,迭代优化对齐

import numpy as np

from sklearn.linear_model import RANSACRegressor

from scipy.linalg import svd

def svd_affine_transform(source, target):

"""SVD-based仿射变换参数估计"""

# 去中心化

centroid_source = np.mean(source, axis=0)

centroid_target = np.mean(target, axis=0)

source_centered = source - centroid_source

target_centered = target - centroid_target

# 计算协方差矩阵

H = source_centered.T @ target_centered

# SVD分解

U, S, Vt = svd(H)

R = Vt.T @ U.T

# 反射矩阵处理

if np.linalg.det(R) < 0:

Vt[-1, :] *= -1

R = Vt.T @ U.T

# 计算缩放因子

scale = np.trace(target_centered.T @ R @ source_centered) / np.trace(source_centered.T @ source_centered)

# 计算平移向量

t = centroid_target - scale * R @ centroid_source

return R, scale, t

def ransac_affine(source, target, n_samples=3, max_trials=1000):

"""RANSAC鲁棒仿射变换"""

model = RANSACRegressor(min_samples=n_samples, residual_threshold=0.1, max_trials=max_trials)

model.fit(source, target)

inlier_mask = model.inlier_mask_

# 使用内点重新估计参数

R, scale, t = svd_affine_transform(source[inlier_mask], target[inlier_mask])

return R, scale, t, inlier_mask

# 示例数据

source_points = np.random.rand(100, 3) # 模拟源点云

R_true = np.array([[0.96, -0.28, 0], [0.28, 0.96, 0], [0, 0, 1]]) # 真实旋转矩阵

scale_true = 1.5

t_true = np.array([2, -1, 0])

target_points = (R_true @ (scale_true * source_points.T)).T + t_true # 生成目标点云

# 添加噪声和异常值

target_points += np.random.normal(0, 0.05, target_points.shape) # 高斯噪声

target_points[::10] += np.random.uniform(-5, 5, (10, 3)) # 10%异常值

# 参数估计

R_est, scale_est, t_est, inliers = ransac_affine(source_points, target_points)

# 验证误差

transformed_points = (R_est @ (scale_est * source_points.T)).T + t_est

mse = np.mean(np.linalg.norm(target_points - transformed_points, axis=1)​**2)

print(f"MSE: {mse:.6f}, 缩放因子: {scale_est:.3f}, 旋转矩阵:\n{R_est}")

问题一的建模核心在于通过几何变换实现多源数据的空间对齐。SVD和RANSAC的组合方法在保证精度的同时提升了鲁棒性,代码示例展示了从理论到实践的完整链路,适用于矿山监测中的传感器数据融合场景。后续代码等持续更新

其中更详细的思路,各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方群名片哦!

2023五一数学建模b保姆思路代码:快递需求分析问。 首先,我们可以采用Python编程语言来解决这个问。我们需要使用一些常用的数据分析库,例如Numpy和Pandas。 代码实现思路如下: 1. 首先,我们需要导入所需的库: import numpy as np import pandas as pd 2. 接下来,读取数据集并进行预处理: data = pd.read_csv('data.csv') # 读取数据集 data['日期'] = pd.to_datetime(data['日期']) # 将日期转换为标准格式 3. 对快递需求进行分析: 3.1 计算每日总需求量: data['总需求量'] = data['订单数量'].groupby([data['日期']]).transform('sum') 3.2 计算每月平均需求量: data['月平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.month]).transform('mean') 3.3 计算每周平均需求量: data['周平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.week]).transform('mean') 4. 进行需求分析: 4.1 计算每个月的需求波动情况: data['需求波动'] = data['总需求量'] - data['月平均需求量'] 4.2 计算每个周的需求波动情况: data['周需求波动'] = data['总需求量'] - data['周平均需求量'] 5. 可以根据需求波动情况,进行快递员人数的调整以满足不同时间段的需求波动情况。 以上就是解决2023五一数学建模b保姆思路代码的大致思路。当然,具体的代码实现还需要根据目要求和数据集进行进一步的调整和优化。同时,在实际问中,我们还可以利用数据可视化工具如Matplotlib将分析结果以图表的方式展示出来,更直观地展示快递需求的变化趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值