2025MathorcupD题 短途运输货量预测及车辆调度问题 保姆级教程讲解|模型讲解

2025Mathorcup数学建模挑战赛(妈妈杯)D题保姆级分析完整思路+代码+数据教学

D题:短途运输货量预测及车辆调度问题

短途运输处于物流网络的最后环节,在同城或同省的末端场地之间进行,将货物从末分拣点发往营业部。它具有运输距离短、资源可复用、时效重点保障的特点,对包裹履约时效和客户体验十分重要,且占用大量运力资源,合理优化可提升运输效率、降低成本。

添加图片注释,不超过 140 字(可选)

短途运输线路由起始场地、目的场地、发运节点组成,起始场地一般是末分拣中心,目的场地是营业部,每天有 6 点和 14 点两个发运节点,发运节点指该线路货物必须在此节点前发出。短途线路的货量预测是资源优化及决策的基础,预测基本单元是每条线路的包裹量。在预测时可得到 “预知” 数据,但该数据存在计划线路与实际不符、未涵盖部分未下单货量、已下单货量可能取消等问题。得到线路总货量后需拆分至 10 分钟颗粒度,以辅助后续优化决策。货量预测结果可转化为运输需求,包括各线路需要调度的车次及发运时间,短途运输场景每车次可装载包裹量相对固定,当 10 分钟颗粒度的累计货量达到车辆满载量即可发运,还存在 “串点” 场景,即合并临近线路货量发运,串点涉及线路一般不超过 3 个。

数据集解读:

附件1:该文件记录了各条短途运输线路的详细信息,包含线路编码、起始场地、目的场地、发运节点、车队编码、在途时长、自有变动成本和外部承运商成本等字段。线路编码唯一标识每条线路,起始场地和目的场地明确了运输的起止位置,发运节点规定了货物的发运时间,车队编码表明该线路由哪个车队负责运输,在途时长反映了货物运输所需的时间,自有变动成本是使用自有车辆运输的变动费用,外部承运商成本则是使用外部承运商运输的费用。这些数据对于建立货量预测模型、确定运输需求以及进行车辆调度和成本评估都具有重要作用。例如,在确定运输需求时,需要考虑在途时长来安排车辆的发运时间;在进行成本评估时,需要对比自有变动成本和外部承运商成本,以优化运输方案,降低总成本。

附件3: 此文件记录了各线路历史 15 天的实际包裹量数据,包含线路编码、日期和包裹量三个字段。线路编码用于区分不同的运输线路,日期明确了包裹量对应的时间,包裹量则是该线路在对应日期的实际运输包裹数量。这些历史数据对于建立货量预测模型至关重要。通过分析各线路在不同日期的包裹量变化趋势,可以找出潜在的规律和模式,从而更准确地预测未来 1 天各条线路的货量。

附件4: 该文件记录了可串点的站点信息,数据以站点编号的形式呈现。这些站点编号代表了在短途运输中可以进行串点操作的站点,即可以合并临近线路较少包裹量为一车发运的站点。这些数据对于确定串点方案非常关键。在进行车辆调度时,通过参考这些可串点的站点信息,可以合理安排车辆的运输路线,将临近站点的包裹合并运输,从而提高车辆的利用率,降低运输成本。

附件5: 此文件记录了各车队的自有车数量信息,包含车队编码和自有车数量两个字段。车队编码用于区分不同的车队,自有车数量明确了每个车队所拥有的自有车辆的数量。这些数据对于车辆调度和成本评估具有重要意义。在确定运输需求和安排车辆时,需要考虑各车队的自有车数量,优先使用自有车辆以降低成本。同时,通过合理调度自有车辆,提高自有车的周转率,也是优化运输方案的重要目标。

四个问题构成一个完整的物流优化链条,即 “预测→调度→技术升级→鲁棒性验证”。问题 1 建立时空细粒度预测模型,其输出的 10 分钟颗粒度货量预测结果是问题 2 - 4 的输入,直接影响运输需求生成和车辆调度质量。问题 2 在基础条件下进行多目标车辆调度,其调度规则是问题 3 的基准。问题 3 引入新技术重构调度方案,其优化结果是问题 4 的评估对象。同时,发运节点时间窗、车辆周转约束、装载刚性等约束条件贯穿于各问题之中。

问题一的分析与求解:

问题 1 产生的背景:短途运输在物流网络中处于末端环节,对包裹履约时效和客户体验至关重要,但占用大量运力资源。合理的货量预测是资源优化及决策的基础,然而 “预知数据” 存在偏差,需要建立准确的货量预测模型。问题 1 为后续问题提供基础数据,其预测结果的准确性直接影响问题 2 的运输需求确定、问题 3 的容器优化调度以及问题 4 的鲁棒性评估。

首先,收集各线路历史 15 天的实际包裹量、近 15 天的每天预知货量及未来 1 天在 21 点时的预知货量等数据。然后,处理 “预知数据” 的偏差,融合历史数据与预知数据。接着,在时间维度上满足生产时段约束和发运节点关联性,在空间维度上进行线路级别的预测并考虑可串点线路间的相关性。最后,采用分层预测框架,先预测总货量再将其分配到 10 分钟颗粒度,输出结果。

建立准确的时空细粒度货量预测模型,将未来 1 天各条线路的货量预测结果拆解到 10 分钟颗粒度。问题 1 要解决的具体问题:处理 “预知数据” 的偏差,融合历史数据与预知数据;在时间和空间维度上进行合理建模,满足生产时段约束和发运节点关联性,避免站点聚合造成的精度损失,考虑可串点线路间的相关性;使 10 分钟颗粒度的结果反映货量到达的波动规律,处理零货量时段的合理分布。

  • 影响因素:历史货量波动规律反映了线路货量的周期性和趋势性变化,预知数据偏差特性(系统性 / 随机性)会干扰预测的准确性,生产时段约束(6 - 11 点和 14 - 21 点不生产包裹量)和发运节点关联性(6 点发运对应前一天 21 点货量)是实际物流生产的时间限制。

  • 理论基础:时间序列分解(STL)可将时间序列分解为趋势、季节和残差成分,便于分析货量的变化规律;空间相关性理论考虑不同线路之间的货量关联;误差修正模型用于处理 “预知数据” 的偏差。

  • 核心变量:目标变量是 10 分钟颗粒度货量,特征变量包括历史货量、预知货量、发运节点等,这些变量是构建预测模型的基础。

  • 算法选择:层级 1 使用 XGBoost/LightGBM 预测总货量,这两种算法具有强大的特征挖掘能力和较高的预测精度;层级 2 使用 LSTM 分配时间细粒度,LSTM 能够处理时间序列数据的长期依赖关系,更准确地将总货量分配到 10 分钟颗粒度。

添加图片注释,不超过 140 字(可选)

解答问题 1 时,首先收集各线路历史 15 天的实际包裹量、近 15 天的每天预知货量及未来 1 天在 21 点时的预知货量等数据。对 “预知数据” 进行偏差修正,融合历史数据与预知数据。在时间和空间维度上进行合理建模,满足生产时段约束和发运节点关联性,考虑可串点线路间的相关性。采用分层预测框架,先使用 XGBoost/LightGBM 预测总货量,再用 LSTM 将总货量分配到 10 分钟颗粒度,最终输出符合要求的预测结果。

问题二的分析与求解:

在得到准确的货量预测后,需要将其转化为运输需求,并进行车辆调度,以提高运输效率、降低成本。问题 2 与其他问题的内在联系和相互作用:问题 2 基于问题 1 的货量预测结果进行运输需求确定和车辆调度,其调度规则和方案为问题 3 的容器优化提供基础,同时也是问题 4 鲁棒性评估的基准方案。

根据问题 1 输出的 10 分钟颗粒度货量,按照车辆满载触发机制和串点合并逻辑生成运输需求。在满足发运时间≤发运节点和车辆周转时间约束的条件下,考虑各车队自有车辆数和车型装载刚性等资源限制,通过两阶段优化(需求生成阶段用动态规划处理串点合并,车辆分配阶段用带时间窗的 VRP 模型),使用 NSGA - II 等多目标算法求解,以实现自有车周转率尽可能高、所有车辆均包裹尽可能高、总成本尽可能低的目标。

添加图片注释,不超过 140 字(可选)

剩余模型构建及后续思路、代码等持续更新。

其中更详细的思路,各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方群名片哦!

2019年MathorCup高校数学建模挑战赛D 2019年第九届MathorCup高校数学建模挑战赛 竞赛信息 竞赛简介 为了培养学生的创新意识及运用数学方法和计算机技术解决实际问题的能力,中国优选法统筹法与经济数学研究会决定主办2019年第九届MathorCup高校数学建模挑战赛,欢迎各高等院校按照竞赛章程及有关规定组织同学报名参赛。 组织机构 主办单位:中国优选法统筹法与经济数学研究会 【中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会】 竞赛时间 报名时间:即日起至2019年 4 月 10日 12:00 竞赛时间:2019年4 月 11 日08:00至2019年 4 月 15 日08:00 参赛对象 普通高校全日制在校生(研究生、本科生、专科生)以队为单位参赛,每队不超过3人,不允许跨校组队参赛。 参赛费用 每支队伍需缴纳200元的报名费用。 奖项设置 参赛队伍:全国一等奖(约5%)、全国二等奖(约15%)、全国三等奖(约30%),从一等奖队伍中经过决赛答辩决出4支队伍获得“MathorCup”荣誉奖; 组织单位:优秀组织单位、优秀组织社团、优秀组织个人; 其它奖励政策:参见《 MathorCup高校数学建模挑战赛奖励细则》( 可从官方主页下载)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值