【数据治理】数据治理与数据资产管理

1.数据治理 

 DAMA 国际的定义:数据治理是对数据资产的管理活动行使权力和控制的活动集合(规划、监控和执行)。

 数据治理是一个大而全的知识体系。在数据管理的几乎所有领域(或者数据生产加工应用全流程),数据治理都应
该参与其中,保证数据管理能够朝着一个更好的方向发展。
  对于已经构建好的数据体系,我们需要搜集现有问题并排列好优先级,做为数据治理工作的阶段性目标,比如数据
质量、成本控制、数据规范、数据模型、数据安全等等。
  数据治理是一个涉及组织如何管理其数据资产的广泛概念。它包括一系列的策略、流程、标准和工具,旨在确保数据
的质量、安全性和合规性。数据治理的目标是帮助组织充分利用其数据的价值,同时减少数据相关的风险。
  为了通俗易懂地解释数据治理,我们可以将其分解为以下几个关键点:
数据质量:确保数据的准确性、完整性和一致性。这意味着数据应该是正确的,没有错误或遗漏,并且在不同的系统
和报告中保持一致。
数据安全:保护数据不被未授权访问或泄露。这包括实施安全措施,如加密、访问控制和监控,以防止数据被滥用或
丢失。
数据合规性:遵守相关的法律法规,如数据保护法、隐私法等。这意味着组织需要确保其数据处理活动符合所有适用
的法律和行业标准。
数据生命周期管理:建立数据的生命周期管理,包括数据的创建、存储、使用、共享、归档和销毁。这有助于确保数
据在整个组织中得到有效和高效地使用。
数据治理框架:建立一个结构化的框架,包括角色、责任、流程和工具,以支持数据治理的实施。这可能包括数据治
理委员会、数据管理员和数据所有者等角色。
数据治理文化:培养一种文化,其中数据被视为重要的资产,所有员工都意识到数据治理的重要性,并积极参与其
中。
  简而言之,数据治理就像是组织内部的数据管家,确保数据的健康和安全,同时帮助组织从数据中获得最大的价值。
通过有效的数据治理,组织可以更好地理解其数据,做出更明智的决策,并在竞争中保持优势。
  让我们用一个幽默风趣的例子来解释数据治理。想象一下,你是一家餐厅的老板,你的餐厅里有一本非常重要的菜
谱,这本菜谱记录了所有顾客喜欢的菜肴和秘密配方。这本菜谱就像是你的数据资产,而数据治理就像是你如何管理这本
菜谱的规则和流程。
数据质量:你确保菜谱上的每一道菜都有详细的配料和烹饪步骤,没有遗漏或错误。这就像是确保数据的准确性,没
有错误或遗漏。
数据安全:你把菜谱放在一个安全的保险箱里,只有你和信任的厨师知道密码。这就像是保护数据不被未授权访问或
泄露。
数据合规性:你确保所有的菜肴都符合食品安全标准,不会让顾客生病。这就像是遵守数据保护法规,确保数据处理
活动合法合规。
数据管理:你定期更新菜谱,添加新的菜肴,淘汰不再受欢迎的菜品。这就像是管理数据的生命周期,确保数据的有
效性和效率。
数据治理框架:你建立了一套规则,比如谁可以修改菜谱,谁负责采购食材,谁负责烹饪。这就像是建立数据治理的
结构化框架,包括角色和责任。
数据治理文化:你鼓励厨师们分享他们的创新想法,一起改进菜谱。这就像是培养一种文化,让每个人都意识到数据
治理的重要性,并积极参与其中。
  通过这样的管理,你的餐厅能够提供高质量的菜肴,满足顾客的口味,同时也确保了餐厅的声誉和食品安全。这就是
数据治理在现实生活中的应用,它帮助你更好地管理你的“数据资产”,确保你的“数据菜肴”既美味又安全。

2. 数据资产管理

数据管理的概念从 80 年代提出已经接近 40 年了,数据治理的提法也有近 20 年了,而数据资产管理的提出基本是最
近 10 年的事情。
  数据资产(Data Asset)是指由企业拥有或者控制的,能够为企业带来未来经济利益的,以物理或电子的方式记录的
数据资源,如文件资料、电子数据等。在企业中,并非所有的数据都构成数据资产, 数据资产是能够为企业产生价值的数
据资源。
  数据资产管理(DAM,Data Asset Management)是指规划、控制和提供数据及信息资产的一组业务职能,包括开发、
执行和监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据资产的价值。数
据资产管理是需要充分融合业务、技术和管理,来确保数据资产保值增值。

 企业管理数据资产就是通过对数据的生命周期的管理,提高数据资产质量,促进数据在“内增值,外增效”两方面的价
值变现。数据先被规范性定义、创建或获得,然后存储、维护和使用,最终被销毁。数据的生命周期开始于数据获取之
前,企业先期制定数据规划、定义数据规范,以期获得实现数据采集、交付、存储和控制所需的技术能力。数据资产管理
一般来说包括统筹规划、管理实施、稽核检查和资产运营四个主要阶段。
  数据资产管理可以分为以下几个关键组成部分:
数据识别与分类:确定哪些数据是组织的关键资产,对数据进行分类,以便更好地管理和利用。
数据存储与备份:确保数据被安全地存储,并定期备份,以防数据丢失或损坏。
数据安全与隐私:实施必要的安全措施来保护数据不被未授权访问或泄露,同时遵守相关的隐私法规。
数据共享与协作:建立数据共享机制,促进不同部门或团队之间的数据协作,提高数据的使用效率。
数据质量与治理:通过数据治理确保数据的准确性、完整性和一致性,提高数据质量。
数据价值实现:通过数据分析和挖掘,将数据转化为洞察力和商业价值,支持决策制定和业务创新。
数据生命周期管理:管理数据从创建到销毁的整个生命周期,确保数据在整个过程中得到适当的处理和保护。
  数据资产管理是数据治理的一个重要组成部分,它帮助组织更好地理解和利用其数据资源,从而在竞争中获得优势。
通过有效的数据资产管理,组织可以确保数据的质量和安全,同时提高数据的可用性和价值。
  想象一下,你是一家书店的老板,你的书店里有成千上万本书。这些书就是你的数据资产,而管理这些书的过程就像
是数据资产管理。
数据识别与分类:你首先需要识别哪些书是畅销书,哪些是经典文学,哪些是专业书籍。这就像是对数据进行识别和
分类,以便更好地管理和利用。
数据存储与备份:你为这些书建立了书架,并且定期对它们进行盘点,确保没有书丢失或损坏。这就像是数据的存储
和备份,确保数据的安全。
数据安全与隐私:你为书店安装了防盗系统,并且确保顾客的个人信息不会被泄露。这就像是数据安全和隐私保护。
数据共享与协作:你允许顾客借阅书籍,并且与其他书店交换书籍,这样顾客可以读到更多的书,书店也可以吸引更
多的顾客。这就像是数据共享和协作。
数据质量与治理:你确保每本书都是最新的版本,并且没有破损。这就像是确保数据的质量和治理。
数据价值实现:你通过分析哪些书籍最受欢迎,来决定进货的种类和数量,这样可以最大化书店的利润。这就像是通
过数据分析来实现数据的价值。
数据生命周期管理:你定期淘汰不再受欢迎的书籍,并且将一些经典书籍永久保存。这就像是管理数据的生命周期。
  通过这样的管理,你的书店能够提供高质量的书籍,满足顾客的需求,同时也确保了书店的运营效率和利润。这就是
数据资产管理在现实生活中的应用,它帮助你更好地管理你的“数据资产”,确保你的“数据书籍”既丰富又安全。
  数据资产的落地手段:
在底层包括数据资产目录、数据分级分类、数据地图、数据安全和数据质量保障机制。
在上层我们需要建立指标体系、标签体系。
最后我们需要建立起一套有效的评估体系,去检测数据管理成本和数据应用价值。
  数据治理就像图书馆的规则,它规定了谁可以借书、借书的期限是多久、损坏图书会有什么后果等。它确保每个人都
能公平、安全地使用图书馆的资源。在数据的世界里,数据治理确保数据被正确、安全地使用,防止数据被滥用或误用。
  数据资产管理则更像是图书馆管理员的工作,他们负责整理书架上的书,确保每本书都在正确的位置,清洁书本,甚
至推荐好书给读者。在数据管理中,数据资产管理关注于如何让数据更有价值,比如通过分析数据来帮助公司做出更好的
决策,或者确保数据能够被容易地找到和使用。
  数据治理和资产管理的区别和联系:
区别:
焦点不同:数据治理更侧重于数据的管理和控制,而数据资产管理更侧重于数据的价值和潜力。
目标不同:数据治理的目标是确保数据的质量和合规性,而数据资产管理的目标是最大化数据资产的价值。
活动范围不同:数据治理活动通常更广泛,包括制定政策、标准和流程,而数据资产管理活动更专注于数据资产
的识别、评估和优化。
联系:
相互依赖:数据治理为数据资产管理提供了必要的框架和基础,而数据资产管理的成果可以反馈到数据治理中,
帮助改进数据管理策略。
共同目标:两者都致力于提高数据在组织中的价值,支持业务目标和战略。
  总的来说,数据治理是定规则,保障数据的安全和合规性;而数据资产管理则是让数据变得有用,提升数据的价值。
两者相辅相成,缺一不可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值