【ybt金牌导航1-3-1】【luogu P3195】玩具装箱(两种做法)

78 篇文章 2 订阅
9 篇文章 0 订阅

玩具装箱

题目链接:ybt金牌导航1-3-1 / luogu P3195

题目大意

有一堆物品,要把它分成任意个区间。
对于每个区间,长度 x x x j − i + ∑ k = i j C k j-i+\sum\limits_{k=i}^{j}C_k ji+k=ijCk
C i C_i Ci 已给出, j j j 是这个区间的右端点, i i i 是这个区间的左端点。

然后这个区间的费用就是 ( x − L ) 2 (x-L)^2 (xL)2
L L L 已给出。

斜率优化的做法

思路1(斜率优化)

首先我们考虑暴力 dp。

f i f_i fi 为对前 i i i 个物品进行划分的最小费用。
那很容易列出方程。
f i = min ⁡ 1 ≤ j < i { f j + ( i − ( j + 1 ) + ∑ k = j + 1 i C k − L ) 2 } f_i=\min\limits_{1\leq j<i}\{f_j+(i-(j+1)+\sum\limits_{k=j+1}^{i}C_k-L)^2\} fi=1j<imin{fj+(i(j+1)+k=j+1iCkL)2}
然后我们可以看到里面的 ∑ \sum 可以用前缀和 s u m i sum_i sumi 来弄。
f i = min ⁡ 1 ≤ j < i { f j + ( i − ( j + 1 ) + s u m i − s u m j − L ) 2 } f_i=\min\limits_{1\leq j<i}\{f_j+(i-(j+1)+sum_i-sum_j-L)^2\} fi=1j<imin{fj+(i(j+1)+sumisumjL)2}
f i = min ⁡ 1 ≤ j < i { f j + ( i − j − 1 + s u m i − s u m j − L ) 2 } f_i=\min\limits_{1\leq j<i}\{f_j+(i-j-1+sum_i-sum_j-L)^2\} fi=1j<imin{fj+(ij1+sumisumjL)2}
f i = min ⁡ 1 ≤ j < i { f j + ( i + s u m i − ( j + 1 + s u m j + L ) ) 2 } f_i=\min\limits_{1\leq j<i}\{f_j+(i+sum_i-(j+1+sum_j+L))^2\} fi=1j<imin{fj+(i+sumi(j+1+sumj+L))2}
然后为了计算看的简洁,我们设 a i = i + s u m i , b i = i + 1 + s u m i + L a_i=i+sum_i,b_i=i+1+sum_i+L ai=i+sumi,bi=i+1+sumi+L
f i = min ⁡ 1 ≤ j < i { f j + ( a i − b j ) 2 } f_i=\min\limits_{1\leq j<i}\{f_j+(a_i-b_j)^2\} fi=1j<imin{fj+(aibj)2}
f i = min ⁡ 1 ≤ j < i { f j + a i 2 − 2 × a i × b j + b j 2 } f_i=\min\limits_{1\leq j<i}\{f_j+a_i^2-2\times a_i\times b_j+b_j^2\} fi=1j<imin{fj+ai22×ai×bj+bj2}
那有这些求最小值的,那我们考虑能不能斜率优化。
f i = f j + a i 2 − 2 × a i × b j + b j 2 f_i=f_j+a_i^2-2\times a_i\times b_j+b_j^2 fi=fj+ai22×ai×bj+bj2
2 × a i × b j + f i − a i 2 = f j + b j 2 2\times a_i\times b_j + f_i-a_i^2=f_j+b_j^2 2×ai×bj+fiai2=fj+bj2
那就可以设 x = b j , y = f j + b j 2 x=b_j,y=f_j+b_j^2 x=bj,y=fj+bj2,那斜率就是 2 × a i 2\times a_i 2×ai

然后就是斜率优化的用单调队列来搞就好了。

代码1(斜率优化)

#include<cstdio>

using namespace std;

int n, l, head, tail, st[50001];
double c[50001], sum[50001];
double f[50001];

double a(int i) {
	return sum[i] + i;
}

double b(int i) {
	return sum[i] + i + l + 1;
}

double X(int i) {
	return b(i);
}

double Y(int i) {
	return f[i] + b(i) * b(i);
}

double xl(int i, int j) {//计算斜率
	return (Y(i) - Y(j)) / (X(i) - X(j));
}

int main() {
	scanf("%d %d", &n, &l);
	for (int i = 1; i <= n; i++) {
		scanf("%lf", &c[i]);
		sum[i] = sum[i - 1] + c[i];
	}
	
	head = tail = 1;
	for (int i = 1; i <= n; i++) {
		while (head < tail && xl(st[head], st[head + 1]) < 2 * a(i))
			head++;
		f[i] = f[st[head]] + (a(i) - b(st[head])) * (a(i) - b(st[head]));
		while (head < tail && xl(i, st[tail - 1]) < xl(st[tail - 1], st[tail]))
			tail--;
		st[++tail] = i;
	}
	
	printf("%lld", (long long)f[n]);
	
	return 0;
}

决策单调性的做法

思路2(决策单调性)

这个方法理解起来还好,然后实现……
看着别人的代码我发蒙了一个下午。

终于,在 LYF 老大哥的帮助下,我 A 了。

先讲讲好理解的方法。
首先,你同样列出暴力方程。(这里就不再弄了,忘了的自己到上面看)
然后你会发现它是类似 F x = min ⁡ i = 1 x − 1 { F i + f i , x } F_x=\min\limits_{i=1}^{x-1}\{F_i+f_{i,x}\} Fx=i=1minx1{Fi+fi,x} 的式子,那我们会想到决策单调性。
那你就要看这个东西它是否满足四边形不等式。
如果要用决策单调性来做,就要保证这个式子是四边形不等式。

什么是四边形不等式呢?
就是要满足 f i , j + f i + 1 , j + 1 ≤ f i + 1 , j + f i , j + 1 f_{i,j}+f_{i+1,j+1}\leq f_{i+1,j}+f_{i,j+1} fi,j+fi+1,j+1fi+1,j+fi,j+1
那在这道题中, f i , j = ( i − j − 1 + s u m i − s u m j − L ) 2 f_{i,j}=(i-j-1+sum_i-sum_j-L)^2 fi,j=(ij1+sumisumjL)2
你把式子都展开,看一下,就会发现它是满足的。
(当然考试的时候你想不出来你可以猜,猜它就是满足的)

然后我们看,满足这个之后,它就会有这样的情况。
对于 F i F_i Fi,如果 F i = x F_i=x Fi=x,那对于大于等于 i i i j j j,有 F j ≥ x F_j\geq x Fjx
也就是说,它有单调性。

那怎么求呢?
两种方法,分治和二分。这里只介绍二分的方法。

你要想,假设现在已经求得了 F 1 ∼ i − 1 F_{1\sim i-1} F1i1 的值,然后要求 F i F_i Fi
假设之前它是这样的:111222333333
那它的出现会使得数列后面一部分改变。

分两种情况:
第一种:111222333444
也就是说它只是拿掉了一部分原来的连续段,那找这个位置我们可以用二分来找。
第二种:111244444444
也就是说它不仅拿走了一个的一部分,还一整个的拿走了一些,那怎么会拿走呢?
就是这个区间的左端点的位置还是新的优。

那你就先看能不能连续的拿走整个区间,然后不能拿了再二分拿一部分。

然后有一点就是如果它吞部分的时候,你二分之后找到之后还要验证一下。要真的可以才能吞。

代码2(决策单调性)

#include<cstdio>

using namespace std;

long long n, L, c[50001], sta[50001], top, ll[50001];
long long f[50001], sum[50001], mid, l, r, re;

long long clac(long long i, long long j) {//算从状态i转移到状态j的花费
	return f[i] + (sum[j] - sum[i] + j - i - L - 1ll) * (sum[j] - sum[i] + j - i - L - 1ll);
}

long long find(long long x) {//二分出到它区间是哪个
	l = 1, r = top;
	while (l <= r) {
		mid = (l + r) >> 1;
		if (ll[mid] == x) return mid;
		if (ll[mid] > x) r = mid - 1;
			else l = mid + 1;
	}
	return r;
}

int main() {
	scanf("%lld %lld", &n, &L);
	for (long long i = 1; i <= n; i++) {
		scanf("%lld", &c[i]);
		sum[i] = sum[i - 1] + c[i];//前缀和
	}
	
	r = 1;
	ll[0] = 1;
	sta[1] = 0;
	for (long long i = 1; i <= n; i++) {
		f[i] = clac(sta[find(i)], i);
		
		while (top && clac(i, ll[top]) < clac(sta[top], ll[top])) top--;
		//把能整个吞掉的区间吞掉
		
		l = ll[top], r = n;//二分能吞一部分的区间
		while (l <= r) {
			mid = (l + r) >> 1;
			if (clac(i, mid) < clac(sta[top], mid)) {
				re = mid;
				r = mid - 1;
			}
			else l = mid + 1;
		}
		
		if (clac(i, re) > clac(sta[top], re)) continue;//吞不了
		
		top++;//吞
		sta[top] = i;
		ll[top] = re;
	}
	
	printf("%lld", f[n]);
	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值